From the Cover: PNAS Plus: Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans |
| |
Authors: | Jeffrey P. Nguyen Frederick B. Shipley Ashley N. Linder George S. Plummer Mochi Liu Sagar U. Setru Joshua W. Shaevitz Andrew M. Leifer |
| |
Affiliation: | aLewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544;;bDepartment of Physics, Princeton University, Princeton, NJ, 08544;;cPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, 08544 |
| |
Abstract: | The ability to acquire large-scale recordings of neuronal activity in awake and unrestrained animals is needed to provide new insights into how populations of neurons generate animal behavior. We present an instrument capable of recording intracellular calcium transients from the majority of neurons in the head of a freely behaving Caenorhabditis elegans with cellular resolution while simultaneously recording the animal’s position, posture, and locomotion. This instrument provides whole-brain imaging with cellular resolution in an unrestrained and behaving animal. We use spinning-disk confocal microscopy to capture 3D volumetric fluorescent images of neurons expressing the calcium indicator GCaMP6s at 6 head-volumes/s. A suite of three cameras monitor neuronal fluorescence and the animal’s position and orientation. Custom software tracks the 3D position of the animal’s head in real time and two feedback loops adjust a motorized stage and objective to keep the animal’s head within the field of view as the animal roams freely. We observe calcium transients from up to 77 neurons for over 4 min and correlate this activity with the animal’s behavior. We characterize noise in the system due to animal motion and show that, across worms, multiple neurons show significant correlations with modes of behavior corresponding to forward, backward, and turning locomotion.How do patterns of neural activity generate an animal’s behavior? To answer this question, it is important to develop new methods for recording from large populations of neurons in animals as they move and behave freely. The collective activity of many individual neurons appears to be critical for generating behaviors including arm reach in primates (1), song production in zebrafinch (2), the choice between swimming or crawling in leech (3), and decision-making in mice during navigation (4). New methods for recording from larger populations of neurons in unrestrained animals are needed to better understand neural coding of these behaviors and neural control of behavior more generally.Calcium imaging has emerged as a promising technique for recording dynamics from populations of neurons. Calcium-sensitive proteins are used to visualize changes in intracellular calcium levels in neurons in vivo which serve as a proxy for neural activity (5). To resolve the often weak fluorescent signal of an individual neuron in a dense forest of other labeled cells requires a high magnification objective with a large numerical aperture that, consequently, can image only a small field of view. Calcium imaging has traditionally been performed on animals that are stationary from anesthetization or immobilization to avoid imaging artifacts induced by animal motion. As a result, calcium imaging studies have historically focused on small brain regions in immobile animals that exhibit little or no behavior (6).No previous neurophysiological study has attained whole-brain imaging with cellular resolution in a freely behaving unrestrained animal. Previous whole-brain cellular resolution calcium imaging studies of populations of neurons that involve behavior investigate either fictive locomotion (3, 7), or behaviors that can be performed in restrained animals, such as eye movements (8) or navigation of a virtual environment (9). One exception has been the development of fluorescence endoscopy, which allows recording from rodents during unrestrained behavior, although imaging is restricted to even smaller subbrain regions (10).Investigating neural activity in small transparent organisms allows one to move beyond studying subbrain regions to record dynamics from entire brains with cellular resolution. Whole-brain imaging was performed first in larval zebrafish using two-photon microscopy (7). More recently, whole-brain imaging was performed in Caenorhabditis elegans using two-photon (11) and light-field microscopy (12). Animals in these studies were immobilized, anesthetized, or both and thus exhibited no gross behavior.C. elegans’ compact nervous system of only 302 neurons and small size of only 1 mm make it ideally suited for the development of new whole-brain imaging techniques for studying behavior. There is a long and rich history of studying and quantifying the behavior of freely moving C. elegans dating back to the mid-1970s (13, 14). Many of these works involved quantifying animal body posture as the worm moved, for example as in ref. 15. To facilitate higher-throughput recordings of behavior, a number of tracking microscopes (16–18) or multiworm imagers were developed (19, 20) along with sophisticated behavioral analysis software and analytical tools (21, 22). Motivated in part to understand these behaviors, calcium imaging systems were also developed that could probe neural activity in at first partially immobilized (23) and then freely moving animals, beginning with ref. 24 and and then developing rapidly (17, 18, 25–29). One limitation of these freely moving calcium imaging systems is that they are limited to imaging only a very small subset of neurons and lack the ability to distinguish neurons that lie atop one another in the axial direction of the microscope. Despite this limitation, these studies, combined with laser-ablation experiments, have identified a number of neurons that correlate or affect changes in particular behaviors including the AVB neuron pair and VB-type motor neurons for forward locomotion; the AVA, AIB, and AVE neuron pairs and VA-type motor neurons for backward locomotion; and the RIV, RIB, and SMD neurons and the DD-type motor neurons for turning behaviors (17, 18, 25, 26, 28, 30, 31). To move beyond these largely single-cell studies, we sought to record simultaneously from the entire brain of C. elegans with cellular resolution and record its behavior as it moved about unrestrained. |
| |
Keywords: | calcium imaging large-scale recording behavior C. elegans microscopy |
|
|