首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous fat suppression and band reduction with large-angle multiple-acquisition balanced steady-state free precession
Authors:Quist Brady  Hargreaves Brian A  Cukur Tolga  Morrell Glen R  Gold Garry E  Bangerter Neal K
Affiliation:Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA.
Abstract:Balanced steady-state free precession (bSSFP) MRI is a rapid and signal-to-noise ratio-efficient imaging method, but suffers from characteristic bands of signal loss in regions of large field inhomogeneity. Several methods have been developed to reduce the severity of these banding artifacts, typically involving the acquisition of multiple bSSFP datasets (and the accompanying increase in scan time). Fat suppression with bSSFP is also challenging; most existing methods require an additional increase in scan time, and some are incompatible with bSSFP band-reduction techniques. This work was motivated by the need for both robust fat suppression and band reduction in the presence of field inhomogeneity when using bSSFP for flow-independent peripheral angiography. The large flip angles used in this application to improve vessel conspicuity and contrast lead to specific absorption rate considerations, longer repetition times, and increased severity of banding artifacts. In this work, a novel method that simultaneously suppresses fat and reduces bSSFP banding artifact with the acquisition of only two phase-cycled bSSFP datasets is presented. A weighted sum of the two bSSFP acquisitions is taken on a voxel-by-voxel basis, effectively synthesizing an off-resonance profile at each voxel that puts fat in the stop band while keeping water in the pass band. The technique exploits the near-sinusoidal shape of the bSSFP off-resonance spectrum for many tissues at large (>50°) flip angles.
Keywords:bSSFP  SSFP  steady state  fat suppression  artifact reduction  flow‐independent angiography
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号