首页 | 本学科首页   官方微博 | 高级检索  
     


Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles
Authors:Chilton L  Loutzenhiser R
Affiliation:Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada.
Abstract:
An inward rectifier potassium current, Kir, has been identified in cerebral and coronary resistance vessels, where it is considered to be an important determinant of resting membrane potential (RMP) and to play a role in blood flow regulation. We investigated the functional role of Kir in the renal afferent arteriole using the in vitro-perfused hydronephrotic rat kidney. Increasing external KCl from 5 to 15 mmol/L induced afferent arteriolar vasodilation. This response was inhibited by 10 to 100 micromol/L Ba(2+), concentrations selective for blockade of Kir, and by chloroethylclonidine (100 micromol/L) but was not blocked by glibenclamide (10 micromol/L) or ouabain (3 mmol/L). Reducing external KCl from 5 to 1.5 mmol/L to enhance rectification of Kir caused vasoconstriction at low renal arterial pressure (40 mm Hg) and vasodilation during myogenic vasoconstriction (120 mm Hg), suggesting that this current dominates RMP at low perfusion pressures. When administered to kidneys perfused at 40 mm Hg renal arterial pressure, 30 micromol/L Ba(2+) elicited afferent arteriolar depolarization, reducing RMP from -47+/-2 to -34+/-2 mV (n=10, P:<0.0001), and vasoconstriction, reducing diameters from 14.5+/-1 to 10.9+/-0.8 microm (n=10, P:=0.0016). Although Ba(2+) reduced resting diameter, blockade of Kir did not prevent myogenic signaling in this vessel. Our findings thus demonstrate the presence of Kir in rat renal afferent arterioles and suggest that this current is an important determinant of RMP in situ.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号