Erythropoietin stimulates wound healing and angiogenesis in mice. |
| |
Authors: | Hale Sayan V Haktan Ozacmak Aysel Guven R Gulhan Aktas I Diler Ozacmak |
| |
Affiliation: | Department of Physiology, Zonguldak Karaelmas University Medical School, Zonguldak, Turkey. halesayan@yahoo.com |
| |
Abstract: | Erythropoietin exerts hematopoietic effects by stimulating proliferation of early erythroid precursors. Nonhematopoietic effects of erythropoietin have also been shown. It may act as a new angiogenic factor in wound healing. This study aimed to investigate the effect of systemic administration of recombinant human erythropoietin on wound healing in mice. Dorsal incisional wounds were performed in mice, which were then divided into two groups; a group treated for 7 days with recombinant human erythropoietin, and a control group. Sacrificing animals on day 7, the wound tissues were collected for analysis of wound breaking strength, malondialdehyde, a marker of lipid peroxidation, hydroxyproline, an index of reparative collagen deposition, reduced glutathione levels, and for histological evaluation. The immunohistochemical determination of vascular endothelial growth factor (VEGF) which is believed to be the most prevalent angiogenic factor throughout the skin repair process, was also studied. The treatment significantly increased wound breaking strength by decreasing malondialdehyde and increasing hydroxyproline levels on day 7 after wounding. No statistically meaningful change was observed in reduced glutathione content. VEGF was immunostained significantly more on wound tissue of treated animals compared to the control group. Recombinant human erythropoietin treatment may be effective in wound healing due to inhibition of lipid peroxidation, deposition of collagen, and VEGF expression in wound area. |
| |
Keywords: | |
|
|