首页 | 本学科首页   官方微博 | 高级检索  
     


New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic
Authors:Edward P. Luke  Fan Yang  Pavlos Kollias  Andrew M. Vogelmann  Maximilian Maahn
Affiliation:aEnvironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973;bSchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794;cCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80305;dPhysical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
Abstract:
Secondary ice production (SIP) can significantly enhance ice particle number concentrations in mixed-phase clouds, resulting in a substantial impact on ice mass flux and evolution of cold cloud systems. SIP is especially important at temperatures warmer than −10C, for which primary ice nucleation lacks a significant number of efficient ice nucleating particles. However, determining the climatological significance of SIP has proved difficult using existing observational methods. Here we quantify the long-term occurrence of secondary ice events and their multiplication factors in slightly supercooled clouds using a multisensor, remote-sensing technique applied to 6 y of ground-based radar measurements in the Arctic. Further, we assess the potential contribution of the underlying mechanisms of rime splintering and freezing fragmentation. Our results show that the occurrence frequency of secondary ice events averages to <10% over the entire period. Although infrequent, the events can have a significant impact in a local region when they do occur, with up to a 1,000-fold enhancement in ice number concentration. We show that freezing fragmentation, which appears to be enhanced by updrafts, is more efficient for SIP than the better-known rime-splintering process. Our field observations are consistent with laboratory findings while shedding light on the phenomenon and its contributing factors in a natural environment. This study provides critical insights needed to advance parameterization of SIP in numerical simulations and to design future laboratory experiments.

Mixed-phase clouds, where supercooled cloud droplets and ice particles coexist, are frequently observed in the Arctic (1). These clouds play a critical role in the hydrological cycle and radiative energy balance, and they have unignorable impacts on sea ice loss and warming in the Arctic (2, 3). Recent theoretical and modeling investigations suggest that the number concentration of ice particles in mixed-phase clouds has a significant influence on the evolution of the cloud microphysical properties (4). Improper representation of ice formation compromises simulation of Arctic mixed-phase clouds in climate and regional models, which can cause considerable errors in the simulated radiative budget (5). Extensive modeling and laboratory studies have been conducted in recent years to investigate ice formation by ice nucleation, especially for heterogeneous ice nucleation for which nucleation is catalyzed by ice-nucleating particles (69). The fundamental underlying mechanisms of heterogeneous ice nucleation are still not fully understood, and the parameterizations that are widely used in atmospheric models are generated by fitting the results from laboratory experiments for various types of ice-nucleating particles. However, observed ice number concentrations can be several orders of magnitude greater than in simulations, especially in supercooled clouds with the temperature warmer than −10C (hereafter, “slightly supercooled clouds”). In this temperature range, some biological aerosols originating from soil, plants, and the ocean are found to be efficient ice-nucleating particles that can trigger ice nucleation above −10C (1013). However, these efficient ice-nucleating particles are rare, suggesting that secondary ice production (SIP) is important (14).The best-known mechanism of SIP in slightly supercooled clouds is the rime-splintering process, also known as the Hallett–Mossop (HM) process. The HM process occurs preferentially for a temperature range of −3C 8C in which small ice splinters are generated during riming. The HM process has been demonstrated in the laboratory using a riming rod rotating in a small chamber filled with supercooled liquid droplets (15). SIP can also be caused by other mechanisms, such as collision fragmentation (16), freezing fragmentation (17, 18), and sublimation fragmentation (19). Details regarding the current understanding of those mechanisms can be found in recent review articles by Field et al. (20) and Korolev and Leisner (21). Among those mechanisms, the HM process is argued to be the most important mechanism for SIP in slightly supercooled clouds (20, 22). However, recent in situ measurements show that substantial numbers of needles and columns (signs of splintering) are observed in mixed-phase clouds without the presence of rimers (i.e., fast falling ice particles). Instead, the presence of large cloud droplets suggests that those observed SIP events are likely due to freezing fragmentation rather than the HM process (23). Pitter and Pruppacher (24) also found in a laboratory wind tunnel study that a noticeable fraction of freezing drizzle drops developed pronounced knobs or spikes, with the spikes breaking off in many cases. The theory of freezing fragmentation is further supported by recent laboratory experiments in which SIP was observed during freezing of a levitated droplet (17, 18). However, conditions for the occurrence of SIP are still poorly known and which SIP mechanism is dominant in mixed-phase clouds is far from clear.Although laboratory experiments can demonstrate the existence of SIP under certain controlled conditions, the idealized mechanisms used for the studies (e.g., rotating rod or a levitated droplet in a calm environment) are not directly translatable to characterizing SIP processes in atmospheric clouds. Therefore, parameterizations of SIP in models using laboratory data are of debatable accuracy (25) because we still do not understand SIP mechanisms at a fundamental level. Aircraft in situ measurements of ice particles and ice-nucleating particles can help to identify the occurrence of SIP in atmospheric clouds; however, statistical studies using such measurements are severely restricted by the small sampling volumes and limited coverage of aircraft flights (23, 26).Remote-sensing techniques provide an alternative way to observe atmospheric clouds, offering larger sampling volumes and longer periods compared with in situ measurements. These features are beneficial for observing processes that are transient and/or infrequent, as may be true for SIP. The occurrence of a SIP event in mixed-phase clouds is indicated by the presence of a large concentration of small ice particles, especially at warmer temperatures where these concentrations are unlikely to be due solely to primary ice nucleation. A common foundation of existing radar-based remote-sensing techniques for identification of SIP events includes the detection of small, nonspherical ice particles using polarimetric variables, such as differential reflectivity (ZDR) (the ratio of the power returned from horizontally versus vertically transmitted and received pulses) and linear depolarization ratio (LDR) (the ratio of cross-polarized versus copolarized power returned with respect to the polarization of transmitted pulses) (27, 28). Close to the time of SIP initiation, radar methods and in situ measurements are challenged alike, as distinguishing small spherical ice particles from cloud droplets is extremely difficult (4). As newly formed small ice particles prefer growing into needle-like ice crystals within the HM temperature zone (between −3C and −8C), they can then alter the value of ZDR and LDR compared with spherical hydrometers, which makes detection of SIP events possible using remote-sensing techniques. Most previous remote-sensing studies of SIP focus on specific cases, for which the thermodynamic properties of the subject mixed-phase clouds are carefully chosen such that the detection of nonspherical ice particles is a readily apparent signal of a SIP event in a small dataset (29, 30).In this study, we obtain a statistical understanding of SIP events. A remote-sensing technique is used to identify SIP events occurring within 6 y (March 2013 to May 2019) of ground-based observations of slightly supercooled liquid clouds. As detailed later, the technique determines the presence of SIP events using joint thresholds of radar LDR and spectral reflectivity and, moreover, quantifies the enhancement of needle-like particle concentrations (i.e., multiplication) based on the spectral reflectivity with respect to a base threshold. We link the occurrence of SIP to the presence of rimers and drizzle, and we estimate the enhancement in ice number concentration with respect to rimer velocity and drizzle size. We show that SIP events can significantly impact ice number concentrations locally when they occur, and we are able to assess the relative importance of two SIP mechanisms, finding that freezing fragmentation is more productive at SIP than the rime splintering normally regarded as the leading process for SIP.
Keywords:secondary ice production   radar Doppler spectra   mixed-phase cloud   remote sensing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号