首页 | 本学科首页   官方微博 | 高级检索  
     


Decellularized biological matrices: an interesting approach for cardiovascular tissue repair and regeneration
Authors:Francesca Boccafoschi  Margherita Botta  Luca Fusaro  Francesco Copes  Martina Ramella  Mario Cannas
Affiliation:Department of Health Sciences, University of Piemonte Orientale 'A. Avogadro', Novara, Italy
Abstract:
The repair and replacement of blood vessels is one of the most challenging topics for biomedical research. Autologous vessels are preferred as graft materials, but they still have many issues to overcome: for instance, they need multiple surgical procedures and often patients may not have healthy and surgically valuable arteries useful as an autograft. A tissue‐engineering approach is widely desirable to generate biological vascular prostheses. Recently, decellularization of native tissue has gained significant attention in the biomedical research field. This method is used to obtain biological scaffolds that are expected to maintain the complex three‐dimensional structure of the extracellular matrix, preserving the biomechanical properties of the native tissues. The decellularizing methods and the biomechanical characteristics of these products are presented in this review. Decellularization of biological matrices induces the loss of major histocompatibility complex (MHC), which is expected to promote an immunological response by the host. All the studies showed that decellularized biomaterials possess adequate properties for xenografting. Concerning their mechanical properties, several studies have demonstrated that, although chemical decellularization methods do not affect the scaffolds’ mechanical properties, these materials can be modified through different treatments in order to provide the desired mechanical characteristics, depending on the specific application. A short overview of legislative issues concerning the use of decellularized substitutes and future perspectives in surgical applications is also presented. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:decellularized biological tissues  cardiovascular  tissue regeneration  mechanical properties  decellularizing techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号