首页 | 本学科首页   官方微博 | 高级检索  
     


E-cadherin is required at GABAergic synapses in cultured cortical neurons
Authors:Fiederling Andreas  Ewert Roman  Andreyeva Aksana  Jüngling Kay  Gottmann Kurt
Affiliation:Institute for Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Germany
Abstract:
Classical cadherins are cell adhesion molecules that are thought to contribute to the control of synapse formation, synaptic transmission, and synaptic plasticity. This is largely based on studies investigating the functions of N-cadherin at glutamatergic synapses, whereas other classical cadherins have hardly been examined at central synapses. We have now used a conditional knockout approach in cultured cortical neurons to address the role of E-cadherin mainly at inhibitory, GABAergic synapses. Cortical neurons were cultured from mouse fetuses carrying floxed E-cadherin alleles in homozygous configuration. E-cadherin knockout was induced in individual neurons by expression of an EGFP-Cre fusion protein. Immunocytochemical stainings for the vesicular GABA (VGAT) and glutamate (VGLUT1) transporters revealed a reduced density of dendritic GABAergic synapses in E-cadherin knockout neurons, whereas glutamatergic synapses were unaffected. Electrophysiological recordings of miniature and action potential-evoked, GABAA receptor-mediated postsynaptic currents confirmed an impairment of GABAergic synapses at the functional level. In summary, our immunocytochemical and electrophysiological analysis of E-cadherin knockout neurons suggested that E-cadherin signaling importantly contributes to the regulation of GABAergic synapses in cortical neurons.
Keywords:Cortical neurons   GABAergic synapses   Synaptic adhesion molecules   E-cadherin
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号