首页 | 本学科首页   官方微博 | 高级检索  
     


Magnification factors,receptive field images and point-image size in the superior colliculus of flying foxes: comparison with the primary visual cortex
Authors:M. G. P. Rosa  L. M. Schmid
Affiliation:(1) Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, 4072 St. Lucia, QLD, Australia
Abstract:
The magnification factor (MF) of the stratum griseum superficialle (SGS) of the superior colliculus (SC) was calculated based on visual receptive fields recorded from anaesthetised and paralysed flying foxes (Pteropus spp.). In areal terms, the MF at the representation of central vision was 4–6 times larger than that in the peripheral representation. This variation is less marked than that observed in the primary visual area (VI), but is roughly that expected if the retinotopic map in the SC was defined by the distribution of ganglion cells in the retina. Two measures of the functional spread of activity in the SC, the receptive field images and the point-image size, were calculated. Receptive field images are remarkably similar throughout the SC. As in VI, the point-image size in the SGS of flying foxes is 0.5–0.6 mm and varies little with eccentricity. Bilateral ablation of the visual cortex results in a reduction of the mean receptive field size of neurones in the SGS, and the point-image size is reduced by half. However, the shape of the point-image function is not affected. These results demonstrate that the spread of activity in the SC is nearly constant throughout the retinotopic map and that this is primarily a result of the direct retinal projection. Although the visual cortex has an expanded central representation in comparison with the SC, the corticotectal pathway does not exert a preferential influence on the central representation of the SC.
Keywords:Optic tectum  Retinotopic organisation  Receptive fields  Retinotectal projection  Corticotectal projection  Bat
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号