首页 | 本学科首页   官方微博 | 高级检索  
     


Neuronal specificity of needling acupoints at same meridian: a control functional magnetic resonance imaging study with electroacupuncture
Authors:Zhang Jun-Hai  Cao Xiao-Ding  Lie Ji  Tang Wei-Jun  Liu Han-Qiu  Fenga Xiao-Yuan
Affiliation:Department of Radiology, Huashan Hospital, Shanghai, China.
Abstract:The purpose of this study was to investigate the neuronal specificity of needling acupoints at same meridian by functional Magnetic Resonance Imaging (fMRI). The selected acupoints GB34 (Yanglinquan) and GB39 (Xuanzhong) were at the same gallbladder meridian based on traditional Chinese medicine. In our study we devise three distinct EA (electroacupuncture) manipulations: real EA (deep needling at acupoints), sham EA (deep needling at no-meridian points) and shallow EA (subcutaneous needling at acupoints). Twelve healthy volunteers with right-handiness were enrolled and received three different EA manipulations in counter-balanced orders. DeQi scores were used to evaluate the degree of needling sensation. We found real EA can induce significant stronger needling sensation than sham EA and shallow EA. Multisubjects group mean analysis showed that pain-related cortex including primary and secondary somatosensory cortex (SI and S II), anterior cingulated cortex (ACC), insula were involved in three EA stimulation. Bilateral activation of prefrontal gyrus and occipital cortex were exclusively found in real EA. Deactivation over the rostral segment of ACC was also shown in real and shallow EA. Further paired two difference analysis indicated that real EA induced higher activation than sham EA over bilateral prefrontal gyrus, right-side occipital gyrus and deactivation over the rostral segment of ACC. In the comparing with real EA versus shallow EA, there was right-side activation over the SI, S II, motor cortex, ACC, insula, thalamus, hippocampus, occipital cortex, and cerebellum; also activation over bilateral prefrontal gyrus, caudate and pons. Although no significant activation was found over periaqueductal gray (PAG), further analysis showed the mean and maximal signal changes were different under three EA manipulations. We concluded that EA at analgesic acupoints of same meridian maybe involved the pain-related neuromatrix especially the hypothalamus-limbic system; deep EA at meridian points could elicit stronger needling sensation and modulate the pain-related neuromatrix more effectively than EA at nonmeridian points or shallow EA at meridian points.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号