Tyrosine-kinase dependent TGF-beta and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. |
| |
Authors: | N Joki S Kaname M Hirakata Y Hori T Yamaguchi T Fujita T Katoh K Kurokawa |
| |
Affiliation: | Department of Internal Medicine, University of Tokyo School of Medicine, Japan. |
| |
Abstract: | Vascular hypertrophy, which is characterized by proliferation of vascular smooth muscle cells (VSMC) and accumulation of extracellular matrix (ECM), is a major pathological change in blood vessels after chronic exposure to hypertension. Blood pressure is transmitted to the arterial walls and counterbalanced by mechanical stress, leading to stretching of circumferentially oriented VSMC, which may play some role in the pathogenesis of vascular hypertrophy. The present study was designed, therefore, to investigate the effect of mechanical stretch on the expression of ECM components and transforming growth factor-beta (TGF-beta), a potent stimulator for ECM production, and to examine the signal transduction mechanisms of the induction of TGF-beta in cultured rat VSMC. VSMC were subjected to cyclic stretch to provide a maximal elongation of 20% at a rate of 60 cycles per minute for up to 24 h. Mechanical stretch stimulated TGF-beta1 mRNA expression in a time- and elongation-dependent manner. Indeed, the secretion of TGF-beta proteins into the culture media was increased after stretch. Stretch also stimulated mRNA expression of the ECM components, type I and type IV collagen, and fibronectin, which was largely inhibited by addition of neutralizing antibody against TGF-beta. The tyrosine kinase inhibitors genistein and herbimycin A blocked the induction of TGF-beta1 and type I collagen by stretch, while protein kinase C inhibitors, the calcium channel blockers nitrendipine and gadolinium, or Ca removal from the media had no effect. These results suggest that stretch-induced, tyrosine kinase-mediated autocrine/paracrine production of TGF-8 may play a critical role in the progression of vascular remodeling associated with high blood pressure. |
| |
Keywords: | |
|
|