首页 | 本学科首页   官方微博 | 高级检索  
     


Glucuronidation of 1-hydroxypyrene by human liver microsomes and human UDP-glucuronosyltransferases UGT1A6, UGT1A7, and UGT1A9: development of a high-sensitivity glucuronidation assay for human tissue.
Authors:L Luukkanen  J Mikkola  T Forsman  P Taavitsainen  J Taskinen  E Elovaara
Affiliation:Laboratory of Toxicokinetics and Metabolism, Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, FIN-00250 Helsinki, Finland.
Abstract:
Human UDP-glucuronosyltransferases (UGT, EC 2.4.1.17) involved in the biotransformation of pyrene were investigated by a sensitive fluorometric high-performance liquid chromatography (HPLC)method developed for determining activities toward 1-hydroxypyrene. The endpoint metabolite of pyrene, 1-pyrenylglucuronide, is a well-known urinary biomarker for the assessment of human exposure to polycyclic aromatic hydrocarbons. 1-Pyrenylglucuronide was synthesized using rat liver microsomes as biocatalyst. The yield was satisfactory, 22%. 1-Pyrenylglucuronide, identified by (1)H NMR and by electrospray mass spectrometry, was used for method validation and calibration. The HPLC assay was very sensitive with a quantitation limit of 3 pg (8 fmol) for 1-pyrenylglucuronide. The assay was precise, showing a relative standard deviation of 5% or less at 0.1 to 300 microM 1-hydroxypyrene. Only 2 microg of microsomal protein was required for the assay in human liver. The glucuronidation of 1-hydroxypyrene was catalyzed at high rates in microsomes from pooled or three individual liver samples, showing comparable apparent K(m) values. The formation of 1-pyrenylglucuronide was catalyzed by recombinant human UGT1A6, UGT1A7, and UGT1A9, the K(m) values being 45, 12, and 1 microM, respectively. The apparent K(m) values in human liver microsomes, ranging from 6.9 to 8.6 microM, agreed well with these results. The method provides a sensitive tool for measuring extremely low UGT activities and a specific means for assessing interindividual differences in 1-hydroxypyrene-metabolizing UGT activities in human liver and other tissues.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号