首页 | 本学科首页   官方微博 | 高级检索  
     


Rat sponge implant model: a new system for evaluating angiogenic gene transfer
Authors:Wang H  Gordon D  Olszewski B  Song Y L  Kovesdi I  Keiser J A
Affiliation:Cardiovascular Therapeutics, Parke-Davis Pharmaceutical Research, Ann Arbor, MI 48105, USA. he.wang@wl.com
Abstract:Therapeutic angiogenesis, either by protein injection or gene therapy, holds considerable promise for the treatment of coronary and peripheral artery diseases. Given the large number of angiogenic genes available, a simple, well defined, standard system to compare the relative angiogenic efficacy of such genes would be valuable. We have employed a replication-deficient adenovirus vector (complete E1a-, partial E1b- and partial E3-) to deliver the beta-galactosidase (beta-gal, AdLacZ) reporter gene or the human VEGF121 gene (AdGV VEGF121.10) to a rat sponge implant model of angiogenesis. beta-gal staining results reveal a transfection efficiency as high as 60% 24 h after 2x1010 particle units AdLacZ injection. Our results also indicate that a single injection of 2x1010 particle units of AdGVVEGF121.10 in the sponge results in >10, 000 pg VEGF protein expression per milligram of sponge tissue 24 h later. VEGF121 protein concentrations decreased 10-fold within 3 days and 100-fold within 7 days after injection. Significant VEGF121 protein levels were still detectable 14 days after initial virus injection. The high level of gene transfection efficiency was accompanied by enhanced angiogenesis in the sponge, a tissue devoid of any vessels before implantation. Compared to control (AdNull: adenovirus vector without the VEGF gene), AdGVVEGF121.10 induced a 2- to 3-fold up-regulation of angiogenesis at 7 and 14 days post vector injection as determined by both increased capillary number and increased tissue ingrowth. The angiogenic effects of AdGVVEGF121. 10 were dose-related in this model system. These findings demonstrate a dose-related angiogenic response to adenovirus-mediated gene therapy in this model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号