首页 | 本学科首页   官方微博 | 高级检索  
检索        


Bacterial flagella explore microscale hummocks and hollows to increase adhesion
Authors:Ronn S Friedlander  Hera Vlamakis  Philseok Kim  Mughees Khan  Roberto Kolter  Joanna Aizenberg
Institution:aHarvard, –Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, 02139;;cDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115; and;dSchool of Engineering and Applied Sciences,;bWyss Institute for Biologically Inspired Engineering, and;eKavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138
Abstract:Biofilms, surface-bound communities of microbes, are economically and medically important due to their pathogenic and obstructive properties. Among the numerous strategies to prevent bacterial adhesion and subsequent biofilm formation, surface topography was recently proposed as a highly nonspecific method that does not rely on small-molecule antibacterial compounds, which promote resistance. Here, we provide a detailed investigation of how the introduction of submicrometer crevices to a surface affects attachment of Escherichia coli. These crevices reduce substrate surface area available to the cell body but increase overall surface area. We have found that, during the first 2 h, adhesion to topographic surfaces is significantly reduced compared with flat controls, but this behavior abruptly reverses to significantly increased adhesion at longer exposures. We show that this reversal coincides with bacterially induced wetting transitions and that flagellar filaments aid in adhesion to these wetted topographic surfaces. We demonstrate that flagella are able to reach into crevices, access additional surface area, and produce a dense, fibrous network. Mutants lacking flagella show comparatively reduced adhesion. By varying substrate crevice sizes, we determine the conditions under which having flagella is most advantageous for adhesion. These findings strongly indicate that, in addition to their role in swimming motility, flagella are involved in attachment and can furthermore act as structural elements, enabling bacteria to overcome unfavorable surface topographies. This work contributes insights for the future design of antifouling surfaces and for improved understanding of bacterial behavior in native, structured environments.
Keywords:microbial adhesion  structured surfaces  bacterial appendages  surface texture  surface wetting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号