首页 | 本学科首页   官方微博 | 高级检索  
     


Ionic and haemodynamic changes influence the release of the excitatory amino acid glutamate in the posterior hypothalamus
Authors:N. Singewald  F. Chen  L. J. Guo  A. Phillippu
Affiliation:(1) Institut für Pharmakologie und Toxikologie der Universität, Innsbruck, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
Abstract:The push-pull technique was used to investigate the release of the excitatory amino acid glutamate in the posterior hypothalamic area of the conscious rat. The hypothalamus was superfused through the pushpull cannula with artificial cerebrospinal fluid (CSF), and the superfusate was collected in time periods of 10 min when ionic conditions in the CSF were changed, or in short periods of 3 min when blood pressure changes were evoked. The mean glutamate release rate was 2.8 + 0.7 pmol/min. Depolarization by hypothalamic superfusion with CSF containing 50 mM K+ enhanced the release of glutamate in the presence of Ca2+. The K+-induced release was attenuated by 40% when the hypothalamus was superfused with Ca2+-free CSF. Replacement of Ca2+ by Mg2+ abolished the K+-induced release of glutamate. Hypovolaemia elicited by haemorrhage enhanced the release rate of glutamate. Similarly, a hypotension elicited by i.v. injection of chlorisondamine (3 mg/kg) led to a pronounced and permanent enhancement in glutamate release. The effects of hypovolaemia and chlorisondamine on glutamate release were abolished in aortic denervated rats, indicating that this response is due to a decrease of impulse generation in baroreceptors. A hypovolaemia elicited by blood infusion did not affect the release of glutamate. Similarly, a pronounced pressor response to phenylephrine (15 mgr/kg per minute) infused intravenously for 9 min was ineffective.The results show that the K+-induced release of glutamate in the hypothalamus is dependent on the presence of Ca2+. The increase in glutamate release rate by hypovolaemia or chlorisondamine suggests that the glutamatergic neurons in the posterior hypothalamic area respond to unloading of aortic baroreceptors and possess a counteracting, hypertensive function.
Keywords:Glutamate release  Central blood pressure regulation  Haemorrhage  Chlorisondamine  Aortic depressor nerve  Push-pull cannula
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号