首页 | 本学科首页   官方微博 | 高级检索  
     


Nitric Oxide Synthase Expression in Macrophages of Histoplasma capsulatum-Infected Mice Is Associated with Splenocyte Apoptosis and Unresponsiveness
Authors:Betty A. Wu-Hsieh  Wen Chen  Hsin-Ju Lee
Affiliation:Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
Abstract:Splenic macrophages from Histoplasma capsulatum-infected mice express inducible nitric oxide synthase (iNOS), and the iNOS expression correlates with severity of the infection. We examined whether production of NO is responsible for apoptosis and the anti-lymphoproliferative response of splenocytes from mice infected with H. capsulatum. In situ terminal deoxynucleotidyl transferase nick end labeling revealed apoptotic nuclei in cryosections of spleen from infected but not normal mice. Splenocytes of infected mice were unresponsive to stimulation by either concanavalin A or heat-killed H. capsulatum yeast cells. Splenocyte responsiveness was restored by addition to the medium of NG-monomethyl-l-arginine, a known inhibitor of NO production. The proliferative response of splenocytes from infected mice was also restored by depletion of macrophages or by replacement with macrophages from normal mice. In addition, expression of iNOS returned to its basal level when the animals had recovered from infection. These results suggest that suppressor cell activity of macrophages is associated with production of NO, which also appears to be an effector molecule for apoptosis of cultured splenocytes from infected mice.

Nitric oxide (NO) has been reported to induce apoptosis in many cells including smooth muscle cells (20), oligodendrocytes (27), pancreatic β cells (11), melanoma cells (35), thymocytes (7), B lymphocytes (4), and macrophages (2). Fehsel et al. recently demonstrated apoptosis in freshly isolated thymocytes after exposure to NO (7). In the same report, they also showed apoptotic foci in close proximity to blood vessels after lipopolysaccharide treatment. Capillary endothelial and dendritic cells adjacent to apoptotic foci stained strongly for inducible nitric oxide synthase (iNOS), suggesting that NO may be the mediator for thymic apoptosis (7). Data from another laboratory also showed that cloned thymic stromal cell monolayers eliminate thymocytes in vitro through production of NO (26). Furthermore, apoptosis has been suggested as a mechanism by which the immune system replenishes itself and maintains homeostasis (30).The dimorphic fungus Histoplasma capsulatum is a facultative intracellular pathogen of the macrophage (32). Although it is not an obligate intracellular pathogen, the organism is found almost exclusively inside host cells during histoplasmosis (5). In our in vitro studies, H. capsulatum exhibits uninhibited growth in normal unstimulated murine macrophages (32). In activated macrophages, either peritoneal macrophages and cells from the Raw 264.7 line stimulated by gamma interferon (IFN-γ) or splenic macrophages stimulated by IFN-γ and lipopolysaccharide, growth of the fungus is inhibited (13, 18, 32). Furthermore, the anti-histoplasma activity of macrophages is dependent on the expression of iNOS and the production of NO (14, 18). However, the significance of NO production in immunoregulation of histoplasmosis is not clearly defined.In this study, we examined whether NO can act as a regulator of apoptosis in lymphoproliferative responses of splenocytes from H. capsulatum-infected mice. We showed that iNOS was induced in splenic macrophages during active infection and the expression of iNOS coincided with active infection. We also observed by in situ terminal deoxynucleotidyl transferase (TdT) nick end labeling (TUNEL) of spleen sections that apoptosis occurred in immune cells in the spleens of infected mice but was minimal in control mice. The link between apoptosis and NO production was established by inclusion of NG-monomethyl-l-arginine (NMMA) in the culture medium. Inhibition of NO production reduced the amount of apoptosis in splenocyte culture. Thereby, we also confirmed the findings of Zhou et al. (36) that production of NO by splenocytes of H. capsulatum-infected mice suppressed the splenic lymphocyte proliferative response. In addition, we showed that macrophages were mediators of splenocyte unresponsiveness through the NO that they produced and that NO production was associated with apoptotic changes in cultured splenocytes from infected mice.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号