首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of the Roles of Hemolysin and Other Toxins in Enteropathy Caused by Alpha-Hemolytic Escherichia coli Linked to Human Diarrhea
Authors:Simon J. Elliott  S. Srinivas  M. John Albert  Khorshed Alam  Roy M. Robins-Browne  Stuart T. Gunzburg  Brian J. Mee  Barbara J. Chang
Affiliation:Center for Vaccine Development1. and Department of Comparative Medicine and Pathology,3. University of Maryland School of Medicine, Baltimore, Maryland 21201; International Center for Diarrheal Disease Research, Dhaka, Bangladesh4.; and Department of Microbiology, The University of Melbourne, Parkville, Victoria 3052,5. and Department of Microbiology, The University of Western Australia, Nedlands, Western Australia 6009,2. Australia
Abstract:Escherichia coli strains producing alpha-hemolysin have been associated with diarrhea in several studies, but it has not been clearly demonstrated that these strains are enteropathogens or that alpha-hemolysin is an enteric virulence factor. Such strains are generally regarded as avirulent commensals. We examined a collection of diarrhea-associated hemolytic E. coli (DHEC) strains for virulence factors. No strain produced classic enterotoxins, but they all produced an alpha-hemolysin that was indistinguishable from that of uropathogenic E. coli strains. DHEC strains also produced other toxins including cytotoxic necrotizing factor 1 (CNF1) and novel toxins, including a cell-detaching cytotoxin and a toxin that causes HeLa cell elongation. DHEC strains were enteropathogenic in the RITARD (reversible intestinal tie adult rabbit diarrhea) model of diarrhea, causing characteristic enteropathies, including inflammation, necrosis, and colonic cell hyperplasia in both small and large intestines. Alpha-hemolysin appeared to be a major virulence factor in this model since it conferred virulence to nonpathogenic E. coli strains. Other virulence factors also appear to be contributing to virulence. These findings support the epidemiologic link to diarrhea and suggest that further research into the role of DHEC and alpha-hemolysin in enteric disease is warranted.Escherichia coli is one of the major causes of human infectious diseases, partly because of the wide variety of virulence mechanisms and pathotypes (15), and new pathotypes continue to be described. A new pathotype was proposed by Gunzburg et al. after examining diarrheal pathogens in a prospective community-based study among Australian Aboriginal children (22). One group of isolates was significantly (P < 0.05) associated with diarrhea, and these isolates were particularly common among children younger than 18 months. The isolates did not produce any recognized enterotoxin or classic enteric virulence factor, although they exhibited diffuse or aggregative adhesion in a modified adhesion assay (15). All isolates were able to detach HEp-2 cell monolayers and were termed “cell-detaching E. coli.” This property was shown to be mediated by alpha-hemolysin, and we demonstrate below that all cell-detaching E. coli strains produce alpha-hemolysin and that some may also produce cytotoxic necrotizing factor 1 (CNF1) and other toxins. However, neither alpha-hemolysin nor CNF1 has been clearly demonstrated to be an enteric virulence factor, and the role of hemolysin in particular is controversial. We will refer to these isolates as diarrhea-associated hemolytic E. coli (DHEC) isolates.Alpha-hemolytic E. coli strains have been associated with human enteric disease, especially among young children (8, 1012, 2022), and the related enterohemolysin of E. coli O157 (35) appears to be involved in enteric disease. There has, however, been no large prospective case-controlled epidemiologic study of the association of alpha-hemolysin with human diarrhea. Alpha-hemolytic bacteria are also associated with enteric disease and diarrhea in pigs, cattle, and dogs (9, 13, 33, 36, 44, 45). Porcine diarrheal strains are almost universally hemolytic (23a), and alpha-hemolysin in these isolates enhanced virulence and colonization (37) but was not itself diarrheagenic. More recent studies have found that Hly+ CNF1+ strains caused fluid accumulation in piglets (33) and that neonatal pigs were susceptible to challenge with Hly+ CNF+ strains, which caused bloody diarrhea, enterocolitis, and systemic disease (45).In contrast, some earlier studies were unable to demonstrate a role for hemolysin in enteric disease, since neither hemolytic bacteria nor their supernatants caused fluid accumulation in ileal loops (10, 14, 37). Hemolytic strains may be isolated from the feces of asymptomatic people (26), and, among humans, hemolysin is more commonly associated with strains causing extraintestinal infections (5, 26).The genetics and in vitro mechanisms of alpha-hemolysin are well known. The hlyCABD operon encodes the structural 110-kDa hemolysin protein (HlyA) and proteins involved in processing and export (42). Once secreted, hemolytic activity is short-lived, and this has complicated studies of hemolysin toxigenicity (42). Hemolysin does not require a receptor to bind to target cells, inserting instead into the target cell membrane to form a pore that allows the free flow of cations, sugars, and water. This leads to leakage of intracellular contents and affects the cytoskeleton and metabolism (4, 9, 42, 43). In extraintestinal infections, hemolysin has multiple effects and roles, including resistance to host defense, tissue damage, and lethality, either by direct action or by stimulation of inflammatory mediators and signal transduction pathways (7, 9, 16, 42).CNF is a 114-kDa protein with homology to a family of dermonecrotic toxins (18) and is encoded by the monocistronic cnf gene, which lies just downstream of hly. The CNF1 toxin causes HeLa cells to become large and multinucleated as a result of actin disassembly, which results from activation of Rho (10, 19, 31). Similar to alpha-hemolysin, the role of CNF1 in diarrhea remains unclear. CNF1-producing strains have been isolated from diarrheal stools and have been associated with several outbreaks in humans (8, 10) and animals (13, 33, 44). Unfortunately, no large, prospective, case-controlled studies have been performed, and the best evidence for the pathogenicity of CNF1-toxigenic isolates is the marked virulence in piglet challenge experiments (45), outlined above. Purified CNF1 did not show enterotoxic potential in the suckling mouse or induce fluid accumulation in the rabbit ileal loop (10, 14), in contrast to the related CNF2, which is linked to enteric disease in animals (13, 14, 30). Both CNF toxins are extremely lethal, and have a variety of in vivo effects including tissue necrosis and edema (1214).In this paper, we characterize DHEC isolates that were obtained from a study where alpha-hemolysin was significantly associated with disease (22) and show that they are able to cause disease in rabbits. Using molecular genetics, we attempt to analyze the role of each gene in pathogenesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号