首页 | 本学科首页   官方微博 | 高级检索  
     

通过加权基因共表达网络分析法探索胰腺癌特异表达的关键基因及表达网络
引用本文:陈立材,成雨. 通过加权基因共表达网络分析法探索胰腺癌特异表达的关键基因及表达网络[J]. 滨州医学院学报, 2021, 44(1): 24-28. DOI: 10.19739/j.cnki.issn1001-9510.2021.01.005
作者姓名:陈立材  成雨
作者单位:1 滨州医学院第二临床医学院 山东 烟台 264003;2 滨州医学院烟台附属医院 山东 烟台 264100
摘    要:
目的通过使用加权基因共表达网络分析(WGCNA)法研究胰腺癌潜在的分子机制,并寻找关键基因。方法从肿瘤基因组图谱(TCGA)数据库中获得胰腺癌和对照组的基因表达数据。通过limma包在R中识别差异表达的基因(DEGs)。采用WGCNA构建胰腺癌的基因共表达网络,并识别共表达模块,进行蛋白质相互作用(PPI)分析,及进行关键基因的筛选。结果共鉴定出胰腺癌106个DEGs,通过WGCNA分析,确定了一个关键模块(MEpurple)。进一步筛选出10个关键基因,包括PKP3,EPCAM,RAB25,CBLC,AP1M2,PRP15L,B3GNT3,ESRP1,AGR2,ARHGEF16。结论 WGCNA法可以识别出与胰腺癌相关的模块和基因,为进一步研究胰腺癌发生发展的分子机制以及靶向治疗提供理论依据。

关 键 词:加权基因共表达网络分析  胰腺癌  关键基因  表达网络
收稿时间:2020-10-30

Identification of differently expressed hub genes in pancreatic cancer by weighted gene co-expression network analysis
CHEN Licai,CHENG Yu. Identification of differently expressed hub genes in pancreatic cancer by weighted gene co-expression network analysis[J]. Journal of Binzhou Medical College, 2021, 44(1): 24-28. DOI: 10.19739/j.cnki.issn1001-9510.2021.01.005
Authors:CHEN Licai  CHENG Yu
Affiliation:1.Second Clinical Medical College, Binzhou Medical University, Yantai 264003, Shandong, P. R. China;2.Yantai Affiliated Hospital, Binzhou Medical University, Yantai 264003, Shandong, P. R. China
Abstract:
Objective To identify the potential key genes and molecular mechanism of pancreatic cancer by weighted gene co-expression network analysis (WGCNA).Methods The gene data of pancreatic cancer and control group were obtained from the cancer genome atlas (TCGA) database. Differentially expressed genes (DEGs) were identified by limma package in R. Then, WGCNA was used to construct the gene co-expression network of pancreatic cancer, identify the co-expression modules, analyze the protein- protein interaction (PPI) and screen the key genes. Results Totally 106 DEGs were identified, and a key module (MEpurple) was identified by WGCNA analysis. We further screened 10 key genes, including PKP3, EPCAM, RAB25, CBLC, AP1M2, PRP15L, B3GNT3, ESRP1, AGR2, ARHGEF16.Conclusion By using WGCNA algorithm, we have identified the modules and genes related to pancreatic cancer, which provides a theoretical basis for further research on the molecular mechanism of pancreatic cancer development and treatment.
Keywords:weighted gene co-expression network analysis  pancreatic cancer  key gene  expression network  
本文献已被 万方数据 等数据库收录!
点击此处可从《滨州医学院学报》浏览原始摘要信息
点击此处可从《滨州医学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号