首页 | 本学科首页   官方微博 | 高级检索  
     


Immunohistochemical localization of μ-opioid receptors in the central nervous system of the rat
Authors:Yu-Qiang Ding  Takeshi Kaneko  Sakashi Nomura  Noboru Mizuno
Abstract:
Of the three major types of opioid receptors (μ, δ κ) in the nervous system, μ-opioid receptor shows the highest affinity for morphine that exerts powerful effects on nociceptive, autonomic, and psychological functions. So far, at least two isoforms of μ-opioid receptors have been cloned from rat brain. The present study attempted to examine immunohistochemically the distribution of μ-opioid receptors in the rat central nervous system with two kinds of antibodies to recently cloned μ-opioid receptors (MOR1 and MOR1B). One antibody recognized a specific site for MOR1, and the other bound to a common site for MOR1 and MOR1B. Intense MOR1-like immunoreactivity (LI) was seen in the ‘patch’ areas and subcallosal streak in the striatum, medial habenular nucleus, medial terminal nucleus of the accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei, locus coeruleus, ambiguus nucleus, nucleus of the solitary tract, and laminae I and II of the medullary and spinal dorsal horns. Many other regions, including the cerebral cortex, amygdala, thalamus, and hypothalamus, also contained many neuronal elements with MOR1-LI. The distribution pattern of the immunoreactivity revealed with the antibody to the common site for MOR1 and MOR1B (MOR1/1B-LI) was almost the same as that of MOR1-L1. Both MOR1-LI and MOR1/1B-LI were primarily located in neuronal cell bodies and dendrites. However, the immunoreactivities were observed in the accessory optic tract, fasciculus retroflexus, solitary tract, and primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns. The presynaptic location of MOR1-LI and MOR1/1B-LI was confirmed by lesion experiments: Enucleation, placing a lesion in the medial habenular nucleus, removal of the nodose ganglion, or dorsal rhizotomy resulted in a clear reduction of the immunoreactivities, respectively, in the nuclei of the accessory optic tract, some subnuclei of the interpeduncular nucleus, nucleus of the solitary tract, or laminae I and II of the spinal dorsal horn. The results indicate that the μ-opioid receptors are widely distributed in the brain and spinal cord, mainly postsynaptically and occasionally presynaptically. Opioids, including morphine, may inhibit the excitation of neurons via the postsynaptic μ-opioid receptors, and also suppress the release of neurotransmitters and/or neuromodulators from axon terminals through the presynaptic μ-opioid receptors. © 1996 Wiley-Liss, Inc.
Keywords:opioid  immunohistochemistry  brain  spinal cord
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号