Spatial event cluster detection using an approximate normal distribution |
| |
Authors: | Mahmoud Torabi Rhonda J Rosychuk |
| |
Affiliation: | (1) Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada |
| |
Abstract: |
Background In geographic surveillance of disease, areas with large numbers of disease cases are to be identified so that investigations of the causes of high disease rates can be pursued. Areas with high rates are called disease clusters and statistical cluster detection tests are used to identify geographic areas with higher disease rates than expected by chance alone. Typically cluster detection tests are applied to incident or prevalent cases of disease, but surveillance of disease-related events, where an individual may have multiple events, may also be of interest. Previously, a compound Poisson approach that detects clusters of events by testing individual areas that may be combined with their neighbours has been proposed. However, the relevant probabilities from the compound Poisson distribution are obtained from a recursion relation that can be cumbersome if the number of events are large or analyses by strata are performed. We propose a simpler approach that uses an approximate normal distribution. This method is very easy to implement and is applicable to situations where the population sizes are large and the population distribution by important strata may differ by area. We demonstrate the approach on pediatric self-inflicted injury presentations to emergency departments and compare the results for probabilities based on the recursion and the normal approach. We also implement a Monte Carlo simulation to study the performance of the proposed approach. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|