摘 要: | 目的通过构建时间序列自回归移动平均模型(autoregressive integrated moving average model,ARIMA),对手足口发病趋势进行预测,探讨该模型在发病预测中的应用。方法从疾病监测信息报告管理系统提取北京市朝阳区2010年1月-2016年12月手足口病月发病数据。建立ARIMA季节乘积模型,对2010年1月-2015年12月的月发病数进行拟合,再以2016年1-12月的月发病数作为验证数据,评价其预测效果。结果通过对模型进行拟合优度及残差序列进行白噪声检验,最后选择了ARIMA(1,0,0)(1,1,0)_(12)为最佳模型。对2016年1-12月发病数进行预测,实际发病数均落入95%CI内,平均相对误差为49.37%。模型中加入2016年1-6月的月实际发病数,预测2016年7-12月的月发病数,平均相对误差为18.12%。结论 ARIMA季节模型可应用于手足口病等具有季节性变动特征的传染病预测。ARIMA模型短期预测手足口病的发病情况精度更高,可通过不断纳入新的实际观测值开展动态分析。ARIMA模型仅为一种数学工具,在实际防控及监测工作中,需要结合专业理论知识及具体情况进行分析。
|