Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice |
| |
作者姓名: | Ping-ping LI, Wei-ping WANG, Zhi-hui LIU, Shao-feng XU, Wen-wen LU, Ling WANG, Xiao-liang WANG |
| |
作者单位: | [1]State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; [2]China National Center for Biotechnology Development, Beijing 100039, China |
| |
摘 要: | Aim: Potassium 2-(1-hydroxypentyl)-benzoate (d/-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dI-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease. Methods: The expression of NMDA receptor subunits GluN1 and GluN2B in the hippocampus and cortex of APP/PS1 transgenic mice were detected using Western blot analysis. Memory deficits of the mice were evaluated with the passive avoidance test. LTP impairment was studied in the dentate region of Aβ1-42-injected rats and APP/PS1 transgenic mice. Results: APP/PS1 transgenic mice showed significantly lower levels of GluN1 and p-GluN2B in hippocampus, and chronic administration of dI-PHPB (100 mg·kg-1·d1, po) reversed the downregulation of p-GluN2B, but did not change GluN1 level in the hippocampus. Furthermore, chronic administration of d/-PHPB reversed the memory deficits in APP/PS1 transgenic mice. In the dentate region of normal rats, injection of dI-PHPB (100 μmol/L, icv) did not change the basal synaptic transmission, but significantly enhanced the high-frequency stimulation (HFS)-induced LTP, which was completely prevented by pre-injection of APV (150 μmol/L, icv). Chronic administration of dI-PHPB (100 mg·kg-1·d-1, po) reversed LTP impairment in Aβ1-42 -injected normal rats and APP/PS1 transgenic mice. Conclusion: Chronic administration of d/-PHPB improves learning and memory and promotes LTP in the animal models of Alzheimer's disease, possibly via increasing p-GluN2B expression in the hippocampus.
|
关 键 词: | 转基因小鼠 长时程增强 APP PS1 苯甲酸 大鼠 戊基 羟基 |
收稿时间: | 2013-10-02 |
本文献已被 维普 等数据库收录! |
|