首页 | 本学科首页   官方微博 | 高级检索  
检索        


Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics
Authors:T W Taylor and T Yamaguchi
Institution:

Department of Bio-Medical Engineering, School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03, Japan

Abstract:A realistic model of the left ventricle of the human heart was constructed using a cast from a dog heart which was in diastole. A coordinate measuring machine was used to measure and digitize the coordinates of the left ventricle. From the complex measured left ventricle shape values, a three-dimensional finite volume representation was constructed using a simulation package. The left ventricular walls moved towards the centre of the aortic outlet in order to study the effects of time-varying left ventricular ejection. The left ventricular wall motion was assumed to follow the blood flow and the wall grid was reformed 25 times during the calculation. The 25.8 cm3 ventricular volume was reduced by 75% in 0.25 s. Centreline and cross-sectional velocity vectors greatly increased in magnitude at the aortic outlet, and most of the pressure occurred in the top 15% of the heart. The computational method should make it possible to compare simulation results with important measurement techniques such as ultrasound and magnetic resonance imaging, and this should allow a finer detail of flow understanding than is presently available using either a modelling or imaging method alone.
Keywords:Author Keywords: Computational fluid dynamics  finite volume method  boundary fitted coordinate system  heart  left ventricle  ejection  intracardiac blood flow  cast based modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号