首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional thiophene-diketopyrrolopyrrole-based molecules/graphene aerogel as high-performance anode material for lithium-ion batteries
Authors:Shengxian Hou  Xinyao Zhang  Pengfei Zhou  Shuhai Chen  Hongtao Lin  Jin Zhou  Shuping Zhuo  Yuying Liu
Affiliation:School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China,
Abstract:
Herein, 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) and di-tert-butyl 2,2′-(1,4-dioxo-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-2,5(1H,4H)-diyl)diacetate (TDPPA) were synthesized, which were then loaded in graphene aerogels. The as-prepared thiophene-diketopyrrolopyrrole-based molecules/reduced graphene oxide composites for lithium-ion battery (LIB) anode composites consist of DPPs nanorods on a graphene network. In relation to the DPPs part, embedding DPPs nanorods into graphene aerogels can effectively reduce the dissolution of DPPs in the electrolyte. It can serve to prevent electrode rupture and improve electron transport and lithium-ion diffusion rate, by partially connecting DPPs nanorods through graphene. The composite not only has a high reversible capacity, but also shows excellent cycling stability and performance, due to the densely distributed graphene nanosheets forming a three-dimensional conductive network. The TDPP60 electrode exhibits high reversible capacity and excellent performance, showing an initial discharge capacity of 835 mA h g−1 at a current density of 100 mA g−1. Even at a current density of 1000 mA g−1, after 500 cycles, it still demonstrates a discharge capacity of 303 mA h g−1 with a capacity retention of 80.7%.

Herein, TDPP and TDPPA were synthesized and then loaded on graphene by hydrothermal method to obtain TDPP/RGO and TDPPA/RGO aerogel, which were applied as anode for LiBs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号