Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo |
| |
Authors: | Toporsian M Govindaraju K Nagi M Eidelman D Thibault G Ward M E |
| |
Affiliation: | Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada. |
| |
Abstract: | The goal of this study was to determine whether hypoxia alters expression of endothelial nitric oxide synthase (eNOS) in the systemic circulation. Rats breathed either air or 10% oxygen for 12 hours, 48 hours, or 7 days. Thoracic aortas were excised and either mounted in organ bath myographs or frozen in liquid nitrogen for later extraction of protein and RNA. eNOS protein (Western blotting) was decreased (20% of normoxic control) after 12 hours, 48 hours, and 7 days of hypoxia. eNOS mRNA (ribonuclease protection assay) was similarly reduced. Acetylcholine (10(-4) mol/L) reversed phenylephrine (10(-5) mol/L) preconstriction by 53.3+/-5.6% in aortic rings from normoxic rats and 26.1+/-4.8% in rings from rats exposed to hypoxia for 48 hours (P<0.05), with comparable impairment of relaxation by the calcium ionophore A23187 (10(-5) mol/L). Responses to diethylamine nitric oxide and 8-bromo-cGMP were unaffected. Aortic cGMP levels after incubation with acetylcholine (10(-6) mol/L) averaged 14.0+/-1.8 fmol/mg in rings from normoxic rats compared with 8.7+/-1.0 fmol/mg in rings from hypoxic rats (P<0. 05). Similarly, nitrate concentration (by capillary electrophoresis) in the media in which the rings were incubated was reduced in the hypoxic group (5.6+/-0.23 micromol/L for hypoxic rats and 7.8+/-0.7 micromol/L for normoxic rats). Impaired endothelial NO release may handicap the vascular responses that defend vital organ function during hypoxia. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|