首页 | 本学科首页   官方微博 | 高级检索  
     


Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers
Authors:Tingting Jiang  Weifei Fu
Affiliation:The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 P. R. China ; State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 P. R. China,
Abstract:Zinc oxide nanoparticles (NPs) are very promising in replacing the phenyl-C61-butyric acid methyl ester (PC61BM) as electron-transporting materials due to the high carrier mobilities, superior stability, low cost and solution processability at low temperatures. The perovskite/ZnO NPs heterojunction has also demonstrated much better stability than perovskite/PC61BM, however it shows lower power conversion efficiency (PCE) compared to the state-of-art devices based on perovskite/PCBM heterojunction. Here, we demonstrated that the insufficient charge transfer from methylammonium lead iodide (MAPbI3) to ZnO NPs and significant interface trap-states lead to the poor performance and severe hysteresis of PSC with MAPbI3/ZnO NPs heterojunction. When PC61BM/ZnO NPs bilayer electron transporting layers (ETLs) were used with a device structure of ITO/poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA)/MAPbI3/PC61BM/ZnO NPs/Al, which can combine the advantages of efficient charge transfer from MAPbI3 to PC61BM and excellent blocking ability of ZnO NPs against oxygen, water and electrodes, highly efficient PSCs with PCE as high as 17.2% can be achieved with decent stability.

Perovskite solar cells with PC61BM/ZnO nanoparticles bilayer electron-transporting layers were achieved with a power conversion efficiency of 17.2% and decent stability.

Organic–inorganic hybrid perovskite solar cells (PSCs) have recently attracted tremendous attention because of their excellent photovoltaic efficiencies.1–4 Since the initial results published in 2009 with efficiencies about 4% using a typical dye-sensitized solar cell structure with liquid electrolyte,5 significant progress has been made in device performance through developing high quality film processing methods,6–10 tuning the perovskite composition,11–15 optimizing the device architectures16,17 and synthesizing new hole/electron transport materials.18–21 Recently, a certified record power conversion efficiency (PCE) of 22.7% was achieved.22 Despite of the success in obtaining dramatically improved PCE, there are certain concerns about the stability and cost towards commercialization. For the state-of-the-art PSCs, perovskites are susceptible to degradation in moisture and air, thus the charge transport materials should prevent the perovskite from exposure to such environments.20,23–25 One the other hand, PSCs also suffer from the high cost of widely used organic charge transport materials such as 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-OMeTAD), phenyl-C61/71-butyric acid methyl ester (PC61/71BM).3,18,26 As alternatives, inorganic materials such as CuSCN,27 CuI,28 CuGaO2,20 and NiOx29,30 which can be acted as hole transport materials and ZnO,31,32 SnO212,33,34 and TiO210,35 which can be acted as electron transport materials are widely studied. Among them, metal oxide nanoparticles (NPs) are very promising in replacing the organic counterparts due to the high carrier mobilities, superior stability, low cost and solution processability at low temperatures.16,31,33The perovskite/ZnO NPs heterojunction has been demonstrated much better stability than perovskite/PCBM,23 however it shows lower PCE compared to the state-of-art devices based on perovskite/PCBM heterojunction.36–38 Thus in this paper, we systematically studied the charge transfer and recombination at CH3NH3PbI3 (MAPbI3) and ZnO NPs or PC61BM interfaces and tried to fabricate devices with high PCE and super stability simultaneously. We demonstrated that insufficient charge transfer from MAPbI3 to ZnO NPs and significant interface trap-states lead to the poor performance and severe hysteresis of PSCs based on MAPbI3/ZnO NPs heterojunction, while the devices based on MAPbI3/PC61BM show high PCE and negligible hysteresis due to the efficient charge transfer from MAPbI3 to PC61BM and less recombination at the interface. On the other hand, the MAPbI3/ZnO NPs devices show excellent stability in air because of the excellent capping ability of ZnO NPs while the stability of MAPbI3/PC61BM devices is very poor. Thus, we fabricated the PSCs with bilayer electron-transporting layers (ETLs) with the device structure of ITO/poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA)/MAPbI3/PC61BM/ZnO NPs/Al, trying to combine the advantages of efficient charge extraction ability of PC61BM and excellent blocking ability of ZnO NPs against oxygen, water and electrode, and finally device with PCE as high as 17.2% was achieved with decent stability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号