首页 | 本学科首页   官方微博 | 高级检索  
     

基于术前脾脏CT影像组学列线图预测胃癌的浆膜浸润
引用本文:沈宁喆,郑经纬,潘步建,章巍腾,陈孝冬. 基于术前脾脏CT影像组学列线图预测胃癌的浆膜浸润[J]. 温州医科大学学报, 2023, 53(1): 15-21,28. DOI: 10.3969/j.issn.2095-9400.2023.01.003
作者姓名:沈宁喆  郑经纬  潘步建  章巍腾  陈孝冬
作者单位:1.温州医科大学第一临床医学院(信息与工程学院),浙江温州325035;2.温州医科大学附属第二医院胃肠外科,浙江温州325027;3.温州医科大学附属第一医院胃肠外科,浙江温州325015
基金项目:浙江省大学生科技创新活动计划暨新苗人才计划(2021R413016);温州市基础性科研项目(Y20220188)。
摘    要:
目的:联合临床检验指标及影像学特征构建一种能够术前识别胃癌浆膜浸润的模型。方法:选取2015年1月至2019年12月温州医科大学附属第一医院经病理证实的656例胃癌患者,采用随机数字表法分为建模组(394例)和验证组(262例)。收集建模组患者的脾脏影像学资料,对收集的数据进行套索回归并选取差异有统计学意义的特征来构建浆膜浸润预测模型。在最大约登指数下取肿瘤浸润风险评分截断值将患者分为高危组(238例)和低危组(418例),然后与其他浸润相关因素如BMI、年龄、性别、高血压、糖尿病等进行单变量和多变量Logistic回归分析,结合显著的独立影响因素共同建立可视化的浆膜浸润预测列线图。结果:将患者以肿瘤浸润评分≤-0.335分为低危组,>-0.335为高危组,经验证组验证,建模组和验证组的诊断准确性较为一致(P<0.001)。经浸润影响因素的单变量和多变量Logistic回归分析发现,影像组学肿瘤浸润评分(OR=2.9,95%CI=2.1~4.2,P<0.001)、术前低白蛋白(OR=1.3,95%CI=1.2~3.1,P=0.003)、血小板与淋巴细胞比值(OR=1.8,95%CI=1.2~2.7,P=0.004)、肿瘤分化程度(OR=2.6,95%CI= 1.8~3.7,P<0.001)是浆膜浸润的独立影响因素。基于这4个指标建立的预测模型能够较为准确地预测浆膜浸润风险,其AUC值为0.733。结论:基于脾脏影像的肿瘤浸润评分联合其他临床因素可准确预测胃癌浆膜浸润与否,提高诊断精度。

关 键 词:影像组学  胃癌  脾脏  浆膜浸润  肿瘤浸润评分  

Establishment of the radiologic tumor invasion index based on radiomics splenic features and clinical factors to predict serous invasion of gastric cancer
SHEN Ningzhe,ZHENG Jingwei,PAN Bujian,ZHANG Weiteng,CHEN Xiaodong. Establishment of the radiologic tumor invasion index based on radiomics splenic features and clinical factors to predict serous invasion of gastric cancer[J]. JOURNAL OF WENZHOU MEDICAL UNIVERSITY, 2023, 53(1): 15-21,28. DOI: 10.3969/j.issn.2095-9400.2023.01.003
Authors:SHEN Ningzhe  ZHENG Jingwei  PAN Bujian  ZHANG Weiteng  CHEN Xiaodong
Affiliation:1.The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou 325035, China; 2.Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; 3.Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
Abstract:
Objective: To construct a model that can identify serosa infiltration in gastric cancer before surgery by combining clinical data and radiological features. Methods: A total 656 patients with pathologically confirmed gastric cancer were selected from the First Affiliated Hospital of Wenzhou Medical University between January 2015 and December 2019, who were randomly divided into the validation group (262 cases) and the modeling group (394 cases). The spleen imaging data of the patients in the modeling group were collected and analyzed by lasso regression, and the serosa infiltration prediction model was constructed on the selected significant features. Patients were divided into high-risk group (238 cases) and low-risk group (418 cases) by tumor infiltration risk score according to the cut-off value under the largest Yoden index, and then univariate and multivariate Logistic regression analysis was made with other infiltration-related factors to establish a visual prediction nomogram. Results: Patients with tumor infiltration score ≤-0.335 and > -0.335 were divided respectively into low-risk group and high-risk group. The diagnostic accuracy of the modeling and validation groups was consistent (P<0.001) when verified by the validation group (P<0.001). Univariate and multivariate Logistic analysis of infiltration risk factors showed that tumor radiomic infiltration score (OR=2.9, 95%CI=2.1-4.2, P<0.001), preoperative albumin (OR=1.3, 95%CI=1.2-3.1, P=0.003), platelet-lymphocyte ratio (OR=1.8, 95%CI=1.2-2.7, P=0.004) and tumor differentiation (OR=2.6, 95%CI=1.8-3.7, P<0.001) were independent influential factors for serosa invasion. The prediction model based on these four indicators accurately predicted the risk of serosa invasion, and its AUC value was 0.733. Conclusion: Tumor infiltration score based on spleen imaging combined with other clinical factors can accurately predict the serosal invasion of gastric cancer and improve the diagnostic precision.
Keywords:radiomics  gastric cancer  spleen  serosal invasion  tumor infiltration score  
点击此处可从《温州医科大学学报》浏览原始摘要信息
点击此处可从《温州医科大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号