Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
| |
Authors: | Pragnesh Mistry Michelle H. W. Laird Ryan S. Schwarz Shannon Greene Tristan Dyson Greg A. Snyder Tsan Sam Xiao Jay Chauhan Steven Fletcher Vladimir Y. Toshchakov Alexander D. MacKerell Jr. Stefanie N. Vogel |
| |
Affiliation: | aDepartment of Microbiology and Immunology and;cInstitute of Human Virology, School of Medicine, University of Maryland, Baltimore (UMB), Baltimore, MD, 21201;;bDepartment of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201; and;dDepartment of Pathology, Case Western Reserve University, Cleveland, OH, 44106 |
| |
Abstract: | Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein–protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.Toll-like receptors (TLRs) are type I transmembrane receptors that detect conserved “pathogen-associated molecular patterns” from microbes, as well as host-derived “danger-associated molecular patterns” (1). TLR2 heterodimerizes with TLR6 or TLR1 to recognize diacyl lipopeptides or triacyl lipopeptides, respectively (2, 3), present in gram-positive and gram-negative bacteria (4–9).Ligand engagement of TLR2/1 or TLR2/6 activates the myeloid differentiation primary response gene 88 (MyD88)-dependent pathway (i.e., nuclear translocation of NF-κB, activation of MAPKs), resulting in production of proinflammatory cytokines (10). Dysregulated TLR2 signaling has been implicated in numerous diseases (e.g., sepsis, atherosclerosis, tumor metastasis, ischemia/reperfusion injury) (11–14). Several inhibitors of TLR2 signaling have been developed (15–18), yet none is licensed for human use. A better understanding of the Toll/IL-1 receptor resistance (TIR) domain interactions involved in TLR2 signaling could lead to novel therapeutic agents.Both TLRs and adapter proteins contain a cytoplasmic TIR domain that mediates homotypic and heterotypic interactions during TLR signaling (19). Two adapter proteins implicated in TLR2 signaling are MyD88 and TIRAP (Mal). A conserved Pro [e.g., P681 in human TLR2 (hTLR2), P712 in murine TLR4 (mTLR4), P674 in hTLR10, P804 in mTLR11] within the BB loop of almost all TIR domains is critical for signaling (20–27). More importantly, the BB loop P681H mutation in hTLR2 abolished recruitment of MyD88 and signaling (20, 26). Based on this evidence, the BB loop within the TLR2 TIR domain appears to be an ideal target for attenuation of TLR2 signaling.Visual inspection of the crystal structure of the hTLR2 TIR domain (26) revealed a pocket formed by residues on the β-B strand and α-B helix that includes the highly conserved Pro and Gly residues of the BB loop. We hypothesized that targeting this pocket with a small molecule might inhibit interaction of TLR2 with MyD88, and thereby blunt TLR2 signaling. We identified C16H15NO4 (C29) and its derivative, ortho-vanillin (o-vanillin), which inhibit mTLR2 and hTLR2 signaling initiated by synthetic and bacterial agonists without cytotoxicity. Interestingly, mutation of the BB loop pocket residues revealed a differential requirement for TLR2/1 vs. TLR2/6 signaling. Our data indicate that computer-aided drug design (CADD) is an effective approach for identifying small molecule inhibitors of TLR2 signaling and has the potential to identify inhibitors for other TLR signaling pathways. |
| |
Keywords: | small molecule inhibitor BB loop TLR2 pocket CADD |
|
|