首页 | 本学科首页   官方微博 | 高级检索  
     


The photobiology of the human circadian clock
Authors:Robin A. Schoonderwoerd  Mischa de Rover  Jan A. M. Janse  Lydiane Hirschler  Channa R. Willemse  Leonie Scholten  Ilse Klop  Sander van Berloo  Matthias J. P. van Osch  Dick F. Swaab  Johanna H. Meijer
Abstract:
In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λmax: 470 nm) but remarkably, also in response to green (λmax: 515 nm) and orange (λmax: 590 nm), but not to violet light (λmax: 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive.

Due to the Earth’s rotation around its axis, many organisms developed an internal clock to anticipate the predictable changes in the environment that occur every 24 h, including the daily light–dark cycle. In mammals, this clock is located in the suprachiasmatic nucleus (SCN), located in the hypothalamus directly above the optic chiasm (1, 2). The SCN receives information from the retina regarding ambient light levels via intrinsically photosensitive retinal ganglion cells (ipRGCs), thus synchronizing its internal clock to the external light–dark cycle. ipRGCs contain the photopigment melanopsin, which is maximally sensitive to blue light, with a peak response to 480-nm light (3, 4). In addition, ipRGCs also receive input from rod cells and cone cells (57). The three cone cell subtypes in the human retina respond maximally to 420-nm, 534-nm, and 563-nm light, while rod cells respond maximally to 498-nm light (8). In rodents, input from cone cells renders the SCN sensitive to a broad spectrum of wavelengths (9), while rod cells mediate the SCN’s sensitivity to low-intensity light (10, 11). Recently, these findings in rodents were proposed to translate to humans (12), suggesting that the human clock is not only sensitive to blue light, but may also be sensitive to other colors.In humans, circadian responses to light are generally measured indirectly (e.g., by measuring melatonin levels or 24-h behavioral rhythms). These indirect measures revealed that circadian responses to light in humans are most sensitive to blue light (1316); however, green light has also been found to contribute to circadian phase shifting and changes in melatonin to a larger extent than would have been predicted based solely on the melanopsin response, suggesting that rods and/or cones may also provide functional input to the circadian system in humans (17). Despite this indirect evidence suggesting that several colors can affect the human circadian clock, this has never been measured directly due to technical limitations. Thus, current guidelines regarding the use of artificial light are based solely on the clock’s sensitivity to blue light. For example, blue light is usually filtered out in electronic screens during the night (18, 19), and blue-enriched light is used by night shift workers to optimize their body rhythm for achieving maximum performance (2022).The ability to directly image the human SCN in vivo has been severely limited due to its small size and the relatively low spatial resolution provided by medical imaging devices. Previous functional MRI (fMRI) studies using 3-Tesla (3T) scanners were restricted to recording the “suprachiasmatic area,” which encompasses a large part of the hypothalamus and thus includes many other potentially light-sensitive nuclei (2325). To overcome this limitation, we used a 7T MRI scanner, which can provide images with sufficiently high spatial resolution to image small brain nuclei (26) such as the SCN. Here, we applied colored light stimuli to healthy volunteers using a custom-designed MRI-compatible light-emitting diode (LED) device designed to stimulate specific photoreceptors while measuring SCN activity using fMRI. Using analytical approaches, we then identified the SCN’s response, the smallest brain nucleus that has so far been imaged. We found that the human SCN responds to a broad range of wavelengths (i.e., blue, green and orange light). Surprisingly, we also found that the blood oxygen level–dependent (BOLD) fMRI signal at the SCN is actually suppressed—not activated—by light.
Keywords:suprachiasmatic nucleus   fMRI   cones   melanopsin   photoreceptors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号