首页 | 本学科首页   官方微博 | 高级检索  
     

神经导航术中脑组织变形线弹性模型的建立
引用本文:庄冬晓,刘翌勋,吴劲松,姚成军,宋志坚,朱海华,章琛曦,王满宁,王伟,周良辅. 神经导航术中脑组织变形线弹性模型的建立[J]. 中华神经外科杂志, 2008, 24(10)
作者姓名:庄冬晓  刘翌勋  吴劲松  姚成军  宋志坚  朱海华  章琛曦  王满宁  王伟  周良辅
作者单位:1. 上海市神经外科临床医学中心,复旦大学附属华山医院神经外科,200040
2. 复旦大学数字医学研究中心
基金项目:国家自然科学基金,上海市科委基础处重点项目 
摘    要:
目的 纠正神经导航手术中的脑组织变形,提高导航手术的精确性.方法 通过有限元方法,构建猪脑组织的线弹性模型.在开颅手术中,通过三维激光扫描获取脑皮层表面的变形,以此作为边界条件,驱动模型,模拟全脑变形情况.并以植入猪脑内的聚甲基内烯酸甲酯微粒为标志点,通过术中实时磁共振扫描获得的脑袋组织实际变形数据对该模型进行验证.结果 该模型的预测误差0.20~1.54mm,平均(0.97±0.44)mm;校正精度56.5%~90.0%,平均(68.0±9.6)%.其中对浅表标志点位移的校正精度高于对深部标志点位移的校正精度[(70.7±9.1)%:(65.4±10.8)%,P<0.05].结论 模型校正技术是一种简便、快速、可靠的纠正术中脑变形的途径.

关 键 词:神经导航  脑变形  有限元方法  线弹性模型

Construction & validation of linear elastic model of intraoperative brain deformation during neurosurgical navigtion
ZHUANG Dong-xiao,LIU Yi-xun,WU Jin-song,YAO Cheng-jun,SONG Zhi-jian,ZHU Hai-hua,ZHANG Chen-xi,WANG Man-ning,WANG Wei,ZHOU Liang-fu. Construction & validation of linear elastic model of intraoperative brain deformation during neurosurgical navigtion[J]. Chinese Journal of Neurosurgery, 2008, 24(10)
Authors:ZHUANG Dong-xiao  LIU Yi-xun  WU Jin-song  YAO Cheng-jun  SONG Zhi-jian  ZHU Hai-hua  ZHANG Chen-xi  WANG Man-ning  WANG Wei  ZHOU Liang-fu
Abstract:
Objietive To compensate for the intraoperative brain deformation for the purpose of increasing the accuracy of neurosurgical navigation. Methods A linear elastic model of porcine brain based on finite element method ( FEM ) was established. After craniotomy in swine,the deformation of cortical surface was tracked by a 3D laser range scanner (LRS) as a boundary condition. This boundary condition was then applied on the finite element equation to simulate the entire brain deformation. Polymethyl methacrylate (PMMA) beads were implanted into the porcine brain as markers of tissue shift,and the predictive accuracy of the model was validated by the real-time data of brain deformation acquired by MR imaging during operation. Results The predictive error of this model ranged from 0.20 to 1.54mm,( mean 0.97±0.44 mm). The accuracy of calibration ranged from 56.5% to 90.0% (mean 68.0±9.6% ). The predictive accuracy on the displacement of superficial markers was higher than that of deeper markers (70.7±9.1% : 65.4±10.8%,P < 0.05 ). Conclusions Model-updated image was proved to be efficient,convenient,and reliable in animal research,therefore,it is an ideal approach to compensate for the brain deformation during neurosurgical navigation.
Keywords:Neuronavigation  Brain deformation  Finite element method  Linear elastic model
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号