Hypoxia-induced lncRNA CASC9 enhances glycolysis and the epithelial-mesenchymal transition of pancreatic cancer by a positive feedback loop with AKT/HIF-1α signaling |
| |
Authors: | Zhengle Zhang Erhu Fang Yuping Rong Han Han Qiong Gong Yingyan Xiao Hehe Li Pei Mei Hanjun Li Zhongchao Zhu Zhigang Tang Jing Tao |
| |
Abstract: | Increasing evidence indicates the dysregulations and pivotal roles of lncRNAs in the development and progression of various cancers, including pancreatic cancer. Enhanced glycolytic flux and epithelial-to-mesenchymal transition (EMT) have been considered as important factors in driving the malignance of pancreatic cancer. Here, we sought to evaluate the biological role and involved mechanism of lncRNA CASC9 (CASC9) in pancreatic cancer. Our present study showed that CASC9 was upregulated in various pancreatic cancer cell lines. Loss- and gain-of function of CASC9 demonstrated its critical roles in promoting the glycolysis and EMT phenotypes of pancreatic cancer. Moreover, knockdown of CASC9 inhibited the tumorigenicity and metastasis in vivo. Additionally, our findings showed that hypoxia induced the expression of CASC9 and enhanced the binding of HIF-1α to its promoter. We also demonstrated that the positive feedback loop of CASC9 and the AKT/HIF-1α signaling cascade partially mediated this biological process. Altogether, our results suggest that CASC9 promotes the glycolysis and EMT of pancreatic cancer by a positive feedback loop with AKT/HIF-1α signaling, which is synergistically enhanced by the tumor hypoxic niche. Our study will provide potential therapeutic targets for treating pancreatic cancer. |
| |
Keywords: | CASC9, HIF-1α , AKT, hypoxia, glycolysis, EMT, pancreatic cancer |
|
|