首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of irradiation, annealing temperature, and artificial aging on the oxidation, mechanical properties, and fracture mechanisms of UHMWPE
Authors:Luisetto Yannick  Wesslen Bengt  Maurer Frans  Lidgren Lars
Affiliation:Department of Polymer Science and Engineering, Lund Institute of Technology, Center for Chemistry and Chemical Engineering, Lund University, SE-22 100 Lund, Sweden.
Abstract:
UHMWPE crosslinked using Gamma radiation is believed to have improved wear properties, and this has been extensively studied during the past 10 years. Mechanical properties, oxidation, and wear properties of UHMWPE materials subjected to various thermal treatments have been investigated immediately after irradiation as well as after several years of aging. Nevertheless, the relationship between all these parameters is not yet fully understood. The aim of this study was to investigate the relationship between the thermal treatments that could be applied to irradiated UHMWPE [lower (gamma 60) or higher (gamma 150) than 140 degrees C, the melting temperature of the polymer] and the mechanical properties, the oxidation and the fracture behavior of the material. The effect of artificial aging on these properties was also investigated. This study concludes that immediately after the annealing, the mechanical properties (UTS and epsilon) of the irradiated and annealed material are improved compared with those of nonirradiated material. Although nonirradiated material has higher fracture toughness than irradiated and annealed materials, the materials break according to the same mechanism of fracture. After aging, no changes could be observed in any of the measured properties for nonirradiated material. On the other hand, important changes could be seen in both irradiated and annealed material after aging. Both UTS and epsilon decreased, much more so in the case of gamma 60. Furthermore, the aging induced a subsurface peak of oxidation in both irradiated and annealed materials, twice as intense for gamma 60 than for gamma 150. The mechanism of fracture of these materials changed drastically after aging, probably due to the presence of the oxidation peak, which seems to occur at a location where cracks initiate easily compared with the nonoxidized bulk of the material. In the case of gamma 60, it seems clear that a correlation between mechanical property, oxidation, and fracture mechanism exists. Such a relationship could not be found for gamma 150.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号