Effects of nitric oxide donors on the afferent resting activity in the cephalopod statocyst |
| |
Authors: | Tu Y Budelmann B U |
| |
Affiliation: | Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, 77555-1163, Galveston, TX, USA. |
| |
Abstract: | The effects of bath applications of the nitric oxide (NO) donors sodium nitroprusside (SNP), diethylamine sodium (DEA), 3-morpholinosydnonimine (SIN-1), and S-nitroso-N-acetyl-penicillamine (SNAP) on the resting activity (RA) of afferent crista fibers were studied in isolated statocysts of the cuttlefish Sepia officinalis. The NO donors had three different effects: inhibition, excitation, and excitation followed by an inhibition. The SNAP analog N-acetyl-DL-penicillamine (xSNAP; with no NO moiety) had no effect. When the preparation was pre-treated with the NO synthase inhibitor N(G)-nitric-L-arginine methyl ester HCl (L-NAME), the NO donors were still effective. When the preparation was pre-treated with the guanylate cyclase inhibitors methylene blue (M-BLU) or cystamine (CYS), NO donors had only excitatory effects, whereas their effects were inhibitory only when pre-treatment was with the adenylate cyclase inhibitors nicotinic acid (NIC-A), 2',3'-dideoxyadenosine (DDA), or MDL-12330A. When pre-treatment was with a guanylate and an adenylate cyclase inhibitor combined, NO donors had no effect; in that situation, the RA of the afferent fibers remained and the preparation still responded to bath applications of GABA. Selective experiments with statocysts from the squid Sepioteuthis lessoniana and the octopod Octopus vulgaris gave comparable results. These data indicate that in cephalopod statocysts an inhibitory NO-cGMP and an excitatory NO-cAMP signal transduction pathway exist, that these two pathways are the key pathways for the action of NO, and that they have only modulatory effects on, and are not essential for the generation of, the RA. |
| |
Keywords: | cGMP cAMP Hair cell Vestibular Equilibrium receptor Invertebrate |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|