Recombinant A27 protein synergizes with modified vaccinia Ankara in conferring protection against a lethal vaccinia virus challenge |
| |
Authors: | Yong He Clement A. MesedaRussell A. Vassell Michael MerchlinskyCarol D. Weiss |
| |
Affiliation: | Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 29 Lincoln Drive, Bethesda, MD 20892, United States |
| |
Abstract: | Highly attenuated modified vaccinia virus Ankara (MVA) is being considered as a safer alternative to conventional smallpox vaccines such as Dryvax or ACAM 2000, but it requires higher doses or more-frequent boosting than replication-competent Dryvax. Previously, we found that passive transfer of A27 antibodies can enhance protection afforded by vaccinia immune globulin (VIG), which is derived from Dryvax immunized subjects. Here we investigated whether protective immunity elicited by MVA could be augmented by prime-boost or combination immunizations with a recombinant A27 (rA27) protein. We found that a prime/boost immunization regimen with rA27 protein and MVA, in either sequence order, conferred protection to mice challenged with a lethal dose of vaccinia virus strain Western Reserve (VV-WR), compared to no protection after immunizations with a similar dose of either MVA or rA27 alone. Moreover, protection was achieved in mice primed simultaneously with combination of both MVA and rA27 in different vaccination routes, without any boost, even though MVA or rA27 alone at the same dose gave no protection. These findings show that rA27 can synergize with MVA to elicit robust protection that has a dose-sparing effect on MVA and can accelerate protection by eliminating the need for a booster dose. |
| |
Keywords: | A27 protein Modified vaccinia Ankara Smallpox vaccine |
本文献已被 ScienceDirect 等数据库收录! |
|