首页 | 本学科首页   官方微博 | 高级检索  
     


Layer- and cell-type-specific tonic GABAergic inhibition of pyramidal neurons in the rat visual cortex
Authors:Hyun-Jong Jang  Kwang-Hyun Cho  Myung-Jun Kim  Shin Hee Yoon  Duck-Joo Rhie
Affiliation:1. Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
2. Catholic Neuroscience Institute, The Catholic University of Korea, Seoul, 137-701, Republic of Korea
Abstract:
Tonic inhibition mediated by persistent activation of γ-aminobutyric acidA (GABAA) receptors by ambient GABA plays a crucial role in the regulation of network excitability and neuronal signal processing. Varying degrees in the strength of tonic inhibition were detected across different cell types throughout the brain. Since sensory information flows through cortical layers in a specific order, the characteristics of tonic inhibition in different cortical layers are of interest. Therefore, we examined the properties of tonic inhibition in pyramidal neurons (PyNs) throughout the rat visual cortex. Layer 2/3 PyNs and burst-spiking PyNs in layers 5 and 6 showed prominent tonic GABAA currents. Tonic GABAA currents in layer 4 star PyNs and regular-spiking PyNs in layers 5 and 6 were much weaker. The magnitude of tonic currents correlated well with the inhibition of spike generation. The amplitude of tonic GABAA currents measured with bicuculline and gabazine, the two different GABAA receptor blockers, did not differ. The differences in the expression levels of extrasynaptic GABAA receptors might be the major contributor to the differences in tonic GABAA currents among cell types. Furthermore, α5 subunits might contribute significantly to tonic currents in infragranular burst-spiking PyNs, especially in layer 5. These results suggest that ambient GABA might exert differential effects on the neuronal integration in a layer- and cell-type-specific manner and thus contribute to the processing of sensory properties by selectively tuning the signals flowing through the visual cortex.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号