Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure |
| |
Authors: | Kang Yu-Ming Zhang Zhi-Hua Johnson Ralph F Yu Yang Beltz Terry Johnson Alan Kim Weiss Robert M Felder Robert B |
| |
Affiliation: | Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. |
| |
Abstract: | Blocking brain mineralocorticoid receptors (MRs) reduces the high circulating levels of tumor necrosis factor (TNF)-alpha in heart failure (HF) rats. TNF-alpha and other proinflammatory cytokines activate neurons in the paraventricular nucleus (PVN) of hypothalamus, including corticotropin-releasing hormone (CRH) neurons, by inducing cyclooxygenase (COX)-2 activity and synthesis of prostaglandin E2 by perivascular cells of the cerebral vasculature. We tested the hypothesis that systemic treatment with a MR antagonist would reduce hypothalamic COX-2 expression and PVN neuronal activation in HF rats. Rats underwent coronary ligation to induce HF, confirmed by echocardiography, or sham surgery, followed by 6 weeks treatment with eplerenone (30 mg/kg per day, orally) or vehicle (drinking water). Eplerenone-treated HF rats had lower plasma TNF-alpha, interleukin (IL)-1beta and IL-6, less COX-2 staining of small blood vessels penetrating PVN, fewer PVN neurons expressing Fra-like activity (indicating chronic neuronal activation), and fewer PVN neurons staining for TNF-alpha, IL-1beta, and CRH than vehicle-treated HF rats. COX-2 and CRH protein expression in hypothalamus were 1.7- and 1.9-fold higher, respectively, in HF+vehicle versus sham+vehicle rats; these increases were attenuated (26% and 25%, respectively) in HF+eplerenone rats. Eplerenone-treated HF rats had less prostaglandin E2 in cerebrospinal fluid, lower plasma norepinephrine levels, lower left ventricular end-diastolic pressure, and lower right ventricle/body weight and lung/body weight ratios, but no improvement in left ventricular function. Treatment of HF rats with anticytokine agents, etanercept or pentoxifylline, produced very similar results. This study reveals a previously unrecognized effect of MR antagonism to minimize cytokine-induced central neural excitation in rats with HF. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|