Bone-particle-impregnated bone cement: an in vivo weight-bearing study |
| |
Authors: | K R Dai Y K Liu J B Park C R Clark K Nishiyama Z K Zheng |
| |
Affiliation: | Department of Orthopaedics, Ninth People's Hospital, Shanghai Second Medical University, People's Republic of China. |
| |
Abstract: | To evaluate an experimental inorganic-bone-particle-impregnated bone cement, canine hip prostheses were implanted in dogs using a regular bone cement on one side and the experimental bone cement on the other. In a preliminary feasibility study, bone ingrowth into the resorbed bone-particle spaces was established 3 months after implantation in three dogs. In a more detailed study, twenty-eight (28) dogs were divided in four groups to delineate the effects of time on the phenomena of bony ingrowth. One month after implantation, active bone ingrowth into the bone cement was obvious. By 3 months postimplantation, the ingrowth appeared to have traversed the thickness of the bone-particle-impregnated cement. By the fifth month, most of the interconnected inorganic bone particles were replaced by new bone. At the end of a year, the ingrown bone was mature and negligible new bone activity was present. Biomechanical pushout tests closely corroborated the histologic observations. The maximum shear strength of the cement/bone interface of the experimental side reached 3.6 times that of the control side at 5 months postimplantation. No further improvements were seen at 12 months postimplantation. A viable bone/cement interface may result in a better orthopedic implant fixation system by combining the advantages of both cement for immediate rigidity and biological ingrowth for longterm stability. |
| |
Keywords: | |
|
|