Inhibition of proinflammatory cytokines by SCH79797, a selective protease-activated receptor 1 antagonist, protects rat kidney against ischemia-reperfusion injury |
| |
Authors: | El Eter Eman Abdelazeem Aldrees Abdulmajeed |
| |
Affiliation: | Physiology Department, King Khalid University Hospital & Medical College, King Saud University, Riyadh, Saudi Arabia. emaneleter@yahoo.com |
| |
Abstract: | Renal ischemia-reperfusion injury (I/R) is the most common cause of acute renal failure. It is partially mediated by thrombin as it is attenuated by thrombin inhibition or deletion of its receptor protease-activated receptor 1 (PAR1). However, the role of PAR1 in renal I/R injury needs to be further elucidated. The present study investigated the effect of PAR1 antagonist, SCH79797 (SCH), on renal protection and downstream effectors involved. Male Wistar rats were pretreated with SCH (25 μg/kg i.p.) or vehicle, 15 min before 45 min of clamping of left renal pedicle after right nephrectomy. To investigate the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt, a group of rats was subjected to pretreatment with an inhibitor of PI3K/Akt (LY 29004, 3 mg/kg i.p.) before renal ischemia and SCH treatment. A sham-operated group served as control and received saline. All rats were killed 24 h after reperfusion or sham operation, and blood samples collected and kidney tissues processed either for immunostaining and histological assessment or for biochemical analysis. SCH79797 markedly attenuated kidney damage histologically and by improving serum creatinine. Both plasma and protein expression of P selectin were markedly reduced as well as neutrophil infiltration, cytokine-induced neutrophil chemoattractant 1, and tumor necrosis factor α. These protective effects of blocking PAR1 receptor were abolished by preadministration of LY29004. These results suggest that PAR1 mediates renal I/R injury and that blocking PAR1 using SCH limits renal injury by an anti-inflammatory effect possibly signaling via PI3K/Akt. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|