首页 | 本学科首页   官方微博 | 高级检索  
     


Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin
Authors:Daniel J. Christoffel  Jessica J. Walsh  Paul Hoerbelt  Boris D. Heifets  Pierre Llorach  Ricardo C. Lopez  Charu Ramakrishnan  Karl Deisseroth  Robert C. Malenka
Abstract:The detailed mechanisms by which dopamine (DA) and serotonin (5-HT) act in the nucleus accumbens (NAc) to influence motivated behaviors in distinct ways remain largely unknown. Here, we examined whether DA and 5-HT selectively modulate excitatory synaptic transmission in NAc medium spiny neurons in an input-specific manner. DA reduced excitatory postsynaptic currents (EPSCs) generated by paraventricular thalamus (PVT) inputs but not by ventral hippocampus (vHip), basolateral amygdala (BLA), or medial prefrontal cortex (mPFC) inputs. In contrast, 5-HT reduced EPSCs generated by inputs from all areas except the mPFC. Release of endogenous DA and 5-HT by methamphetamine (METH) and (±)3,4-methylenedioxymethamphetamine (MDMA), respectively, recapitulated these input-specific synaptic effects. Optogenetic inhibition of PVT inputs enhanced cocaine-conditioned place preference, whereas mPFC input inhibition reduced the enhancement of sociability elicited by MDMA. These findings suggest that the distinct, input-specific filtering of excitatory inputs in the NAc by DA and 5-HT contribute to their discrete behavioral effects.

The nucleus accumbens (NAc), a major node of classic mesolimbic reward circuitry, plays a critical role in a variety of adaptive and pathological motivated behaviors by integrating information carried by inputs from a broad range of brain areas with distinct, yet overlapping functions (16). Output from the NAc is provided by medium spiny neurons (MSNs), the activity of which strongly depends on excitatory inputs from these brain areas, most prominently the ventral hippocampus (vHip), periventricular thalamus (PVT), basolateral amygdala (BLA), and medial prefrontal cortex (mPFC) (3, 711). The NAc is also a behaviorally important target for two of the brain’s major neuromodulatory systems, dopamine (DA) and serotonin (5-HT) (1, 5, 6, 1214). DA release in the NAc, whether caused by drugs of abuse or optogenetic stimulation, is powerfully reinforcing and plays a critical role in shaping operant responses (1, 46, 1517). In contrast, unlike DA release, release of 5-HT in the NAc, generated either pharmacologically or optogenetically, is not acutely reinforcing but can powerfully influence sociability (18, 19).The robust differences in the behavioral consequences of DA and 5-HT release in the NAc suggest that these neuromodulators must influence MSN activity in, perhaps profoundly, different ways. Yet little is known about the detailed mechanisms by which these neuromodulators accomplish this task. Because of the importance of excitatory input in controlling MSN activity and the fact that both DA and 5-HT are well established to modulate excitatory synaptic transmission in the NAc (18, 2023), we hypothesized that an important mechanism by which these neuromodulators might distinctly influence MSN activity is by differentially filtering incoming information from major input structures. Specifically, we hypothesized that DA and 5-HT would depress excitatory synaptic transmission in distinct, input-specific manners. Because of methodological limitations prior to the advent of optogenetics, virtually all previous work examining DA and 5-HT modulation of excitatory transmission in the NAc used bulk electrical stimulation of unknown inputs.Consistent with our hypothesis, exogenously applied DA and 5-HT, as well as release of endogenous DA and 5-HT, depressed excitatory synaptic transmission in distinct, input-specific manners. Input-specific optogenetic inhibition of excitatory inputs to the NAc revealed input-specific effects on conditioned place preference and sociability assays, which are affected by NAc release of DA and 5-HT, respectively. Together, these results provide evidence that the input-specific filtering of excitatory input from distinct brain regions contributes to the behavioral effects of DA and 5-HT release in the NAc and provides a foundation for further work elucidating the neural mechanisms by which modulation of NAc activity influences motivated behaviors.
Keywords:neuromodulators   reward   nucleus accumbens   dopamine   serotonin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号