首页 | 本学科首页   官方微博 | 高级检索  
     


Mesna or cysteine prevents chloroacetaldehyde-induced cell death of human proximal tubule cells
Authors:Gerald Schwerdt  Antje Kirchhoff  Ruth Freudinger  Brigitte Wollny  Andreas Benesic  Michael Gekle
Affiliation:Department of Physiology, University of Würzburg, Würzburg, Germany. gerald.schwerdt@mail.uni-wuerzburg.de
Abstract:
Chloroacetaldehyde (CAA) is formed in the body from the chemotherapeutically used drug ifosfamide (IFO). CAA leads to cell death in proximal tubule cells mainly through the mechanism of necrosis rather than apoptosis. During chemotherapy, 2-mercaptosulfonic acid (mesna) is used with IFO to protect the urothel from cell damage. Little is known of the effect of mesna on renal proximal tubule cells, the primary site of damage after IFO treatment. Mesna contains a sulfhydryl (SH) group. To clarify whether SH-group-containing molecules can prevent CAA-induced cell death, we studied the effect of mesna and cysteine on necrosis, apoptosis, and protein content in a human proximal tubule-derived cell line (IHKE cells) treated with CAA. Both substances prevented CAA-induced necrotic cell death and protein loss and restored CAA-inhibited caspase-3 activity. CAA also prevented cisplatin-induced apoptosis. This inhibition was reversible in the presence of glutathione (GSH). We conclude that SH-containing molecules can protect proximal tubule cells from cell death because they interact with CAA before CAA can disturb other important cellular SH groups. A sufficient supply of intra- and extracellular SH groups during IFO chemotherapy may therefore have the ability to protect renal tubule cells from cell death.
Keywords:Chloroacetaldehyde  Mesna  Caspase  Apoptosis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号