首页 | 本学科首页   官方微博 | 高级检索  
     


Neurophysiology of converging synaptic inputs from the rat prefrontal cortex,amygdala, midline thalamus,and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens
Authors:David M. Finch
Abstract:Neurophysiological responses mediated by projections from five telencephalic and diencephalic regions (the infra- and prelimbic portions of the prefrontal cortex, amygdala, midline and intralaminar thalamic nuclei, entorhinal cortex and subiculum/CA1) to the caudate/putamen (CPu) and nucleus accumbens (Acb) of the dorsal and ventral striatum were studied in chloral-hydrate-anesthetized rats. Both extra- and intracellular in vivo recording techniques were used. A retrograde tracer (wheatgerm agglutinin-apo-horseradish peroxidase-5 nm colloidal Gold) was deposited in some animals in the vicinity of recording sites to confirm that stimulating electrodes were located near cells that projected to the striatum. Electrical stimulation of these five regions, respectively, evoked excitatory responses in 60%, 22%, 51%, 25%, and 17% of striatal neurons. Some responses, particularly with thalamic stimulation, showed short-term frequency potentiation in which 5/s stimulation increased the probability of spike firing. About half of responsive cells showed convergent excitation to more than one stimulating site. It was possible with convergent excitatory responses to show synaptic interactions: simultaneous activation of more than one site produced spatial and temporal summation to increase the probability of spike firing. Up to 5-way convergence onto single striatal neurons and up to 3-way interactions could be shown. These results indicate that functional influences from the hippocampal formation can converge with other excitatory input onto single striatal neurons to effect synaptic integration. © 1996 Wiley-Liss, Inc.
Keywords:entorhinal cortex  subiculum  striatum  infralimbic  prelimbic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号