首页 | 本学科首页   官方微博 | 高级检索  
     


EEG functional connectivity contributes to outcome prediction of postanoxic coma
Affiliation:1. Laboratory of Cognitive and Computational Neuroscience (LNCyC), Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain;2. Clinical Neurophysiology (CNPH), TechMed Centre, University of Twente, the Netherlands;3. Neurocentrum, Medisch SpectrumTwente, Enschede, the Netherlands;4. Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands;5. Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands;6. Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Abstract:ObjectiveTo investigate the additional value of EEG functional connectivity features, in addition to non-coupling EEG features, for outcome prediction of comatose patients after cardiac arrest.MethodsProspective, multicenter cohort study. Coherence, phase locking value, and mutual information were calculated in 19-channel EEGs at 12 h, 24 h and 48 h after cardiac arrest. Three sets of machine learning classification models were trained and validated with functional connectivity, EEG non-coupling features, and a combination of these. Neurological outcome was assessed at six months and categorized as “good” (Cerebral Performance Category [CPC] 1–2) or “poor” (CPC 3–5).ResultsWe included 594 patients (46% good outcome). A sensitivity of 51% (95% CI: 34–56%) at 100% specificity in predicting poor outcome was achieved by the best functional connectivity-based classifier at 12 h after cardiac arrest, while the best non-coupling-based model reached a sensitivity of 32% (0–54%) at 100% specificity using data at 12 h and 48 h. Combination of both sets of features achieved a sensitivity of 73% (50–77%) at 100% specificity.ConclusionFunctional connectivity measures improve EEG based prediction models for poor outcome of postanoxic coma.SignificanceFunctional connectivity features derived from early EEG hold potential to improve outcome prediction of coma after cardiac arrest.
Keywords:EEG functional connectivity  Machine learning  Postanoxic coma  Intensive care  Outcome prediction  EEG"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  electroencephalography  ICU"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  intensive care unit  CPC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  cerebral performance category  SSEP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  somatosensory evoked potential  COH"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  coherence  ciCOH"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  corrected imaginary coherence  PLV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  phase locking value  ciPLV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  corrected imaginary phase locking value  MI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0115"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  mutual information  BT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  bagged tree  LSVM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0135"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  linear support vector machine  CI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0145"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  confidence interval, ROC, receiving operating characteristic  AUC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  k0155"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  area under the curve
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号