首页 | 本学科首页   官方微博 | 高级检索  
     


A2 adenosine receptors inhibit calcium influx through L-type calcium channels in rod photoreceptors of the salamander retina.
Authors:Salvatore L Stella  Eric J Bryson  Wallace B Thoreson
Affiliation:Department of Pharmacology and Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5540, USA.
Abstract:
Presynaptic inhibition is a major mechanism for regulating synaptic transmission in the CNS and adenosine inhibits Ca(2+) currents (I(Ca)) to reduce transmitter release at several synapses. Rod photoreceptors possess L-type Ca(2+) channels that regulate the release of L-glutamate. In the retina, adenosine is released in the dark when L-glutamate release is maximal. We tested whether adenosine inhibits I(Ca) and intracellular Ca(2+) increases in rod photoreceptors in retinal slice and isolated cell preparations. Adenosine inhibited both I(Ca) and the [Ca(2+)]i increase evoked by depolarization in a dose-dependent manner with approximately 25% inhibition at 50 microM. An A2-selective agonist, (N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine) (DPMA), but not the A1- or A3-selective agonists, (R)-N(6)-(1-methyl-2-phenylethyl)adenosine and N(6)-2-(4-aminophenyl)ethyladenosine, also inhibited I(Ca) and depolarization-induced [Ca(2+)]i increases. An inhibitor of protein kinase A (PKA), Rp-cAMPS, blocked the effects of DPMA on both I(Ca) and the depolarization-evoked [Ca(2+)]i increase in rods. The results suggest that activation of A2 receptors stimulates PKA to inhibit L-type Ca(2+) channels in rods resulting in a decreased Ca(2+) influx that should suppress glutamate release.
Keywords:
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号