首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应差分进化算法的间歇反应动态优化求解
引用本文:范勤勤,颜学峰. 基于自适应差分进化算法的间歇反应动态优化求解[J]. 医学教育探索, 2010, 0(6): 832-838
作者姓名:范勤勤  颜学峰
作者单位:华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海 200237;华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海 200237
基金项目:国家自然科学基金(20776042);国家863项目(2007AA04Z164);教育部博士点基金(20090074110005);上海市曙光计划(09SG29);上海市重点学科建设项目(B504)
摘    要:为了求解间歇反应动态优化问题,提出了一种自适应差分进化算法(Self-Adaptive Differential Evolution, SADE)。在SADE算法中,每个个体都拥有自己的控制参数。该算法在对原优化问题进行差分进化搜优的同时,以权重大小来评价各个控制参数的优劣,并以加权控制参数作为控制参数的进化方向,实现其自适应调整。结果表明SADE算法收敛速度快、求解精度高。将SADE算法应用于两个典型的间歇反应动态优化问题中,取得了较好的优化效果;同时,分析了时间离散度对优化结果的影响。

关 键 词:差分进化算法; 协进化; 间歇反应; 动态优化

Dynamic Optimization of Batch Reactor Based on Self-adaptive Differential Evolution Algorithm
FAN Qin-qin and YAN Xue-feng. Dynamic Optimization of Batch Reactor Based on Self-adaptive Differential Evolution Algorithm[J]. Researches in Medical Education, 2010, 0(6): 832-838
Authors:FAN Qin-qin and YAN Xue-feng
Affiliation:Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China;Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
Abstract:An self-adaptive differential evolution algorithm (SADE) is introduced to solve the dynamic optimization problem of batch reactor. In SADE, each original individual has its own control parameters. Differential evolution operator is employed to search the optimization problems, and the values of weight are applied for evaluating the corresponding control parameters. Meanwhile, the weighted control parameters are used as the evolution direction of adaptively adjusting the control parameters. The experimental results show that SADE is of higher precision and fast convergence. Finally, SADE is applied for two typical dynamic optimization problems of batch reactor, and some better optimization results are obtained. Furthermore, the effect of the discrete-time degree on the optimization solution is also analyzed.
Keywords:differential evolution algorithm   co-evolution   batch reaction   dynamic optimization
点击此处可从《医学教育探索》浏览原始摘要信息
点击此处可从《医学教育探索》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号