首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis
Authors:Pollock Natashka S  Ferguson Shane C D  McFarlane Sarah
Affiliation:Genes and Development Research Group, University of Calgary, Health Sciences Centre, Calgary, Alberta T2N 4N1, Canada.
Abstract:
Accumulating evidence suggests that voltage-dependent potassium (Kv) channels have important and varied roles in the development of neuronal and non-neuronal cell types. They have been implicated in processes such as proliferation, cell adhesion, migration, neurite outgrowth, and axon guidance. In this study, we used antibodies against several electrically active Kv channel alpha-subunits (Kv1-4) to describe the spatial and temporal expression patterns of Kv channel subunits in Xenopus laevis retinal ganglion cell (RGC) somata, axons, and growth cones. We found that RGCs express Kv1.3-, Kv1.5-, Kv3.4-, and Kv4.2-like subunits. Each subunit displayed unique cellular and subcellular distributions. Moreover, the expression patterns changed considerably over the major period of Xenopus retinal cell genesis and differentiation. Weak or no immunoreactivity was observed with antibodies against Kv1.1, Kv1.2, Kv1.4, Kv1.6, and Kv3.2 subunits in RGCs or other retinal cell types. In support of our previous pharmacologic evidence implicating Kv channels in RGC axon outgrowth, we found that Kv1.5-, Kv3.4-, and Kv4.2-like proteins, but not Kv1.3-like subunits, are abundantly expressed in RGC growth cones.
Keywords:growth cone  immunocytochemistry  retina  retinal ganglion cell
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号