Acidic ATP activates lymphocyte outwardly rectifying chloride channels via a novel pathway |
| |
Authors: | He-Ping Ma Zhen-Hong Zhou You-You Liang Sunil Saxena David G. Warnock |
| |
Affiliation: | (1) Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA;(2) Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;(3) Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA |
| |
Abstract: | Using whole-cell patch-clamp techniques we found that ATP activated an outwardly rectifying current in Daudi human B lymphoma cells under acidic conditions. The substitution of Cl– for gluconate– shifted the reversal potential, while Cl– channel blockers, 4,4-diisothiocyanostibene-2,2-disulfonic acid (DIDS) and 9-anthracene carboxylic acid (9-AC), blocked the current, indicating that ATP induces this current by activating the outwardly rectifying chloride channel (ORCC). The effect of ATP on ORCC was mimicked by ADP, but not by other P2 receptor agonists such as ATPS (a poorly hydrolyzable analog of ATP), 2,3-O-benzoyl-4-benzoyl-ATP (BzATP), and UTP. The ATP-induced ORCC current was completely blocked by 100 M suramin (a P2 receptor antagonist), and was partially blocked by 100 M pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid tetrasodium (PPADS), which is another P2 receptor antagonist. Neither inactivation of G proteins nor elimination of extracellular Ca2+ affected the ATP-induced current, indicating that G protein-coupled P2Y receptors and Ca2+-permeable P2X receptors are not involved. Based on the pharmacological profile and the fact that acidic conditions are required for ATP to activate the ORCC, we suggest that acidic ATP activates the lymphocyte ORCC via a novel pathway, which is not associated with any previously described purinergic receptors. |
| |
Keywords: | ADP ATP /content/2aefe9xhw86h6amd/xxlarge947.gif" alt=" gamma" align=" MIDDLE" BORDER=" 0" >S Daudi cells DIDS Outwardly rectifying chloride channel Suramin |
本文献已被 PubMed SpringerLink 等数据库收录! |
|