首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于小波变换的脑电信号癫痫特征波的识别算法
引用本文:吴敏,韦志辉,汤黎明,孙玉宝,刘铁兵. 一种基于小波变换的脑电信号癫痫特征波的识别算法[J]. 医疗设备信息, 2008, 23(4): 21-24
作者姓名:吴敏  韦志辉  汤黎明  孙玉宝  刘铁兵
作者单位:南京军区南京总医院,南京理工大学,南京军区南京总医院,南京理工大学,南京军区南京总医院 南京市210002,南京理工大学南京市210094,南京市210094,南京市210002,南京市210094,南京市210002
摘    要:
目的通过选取小波变换的多尺度特性算法,能够快速而准确的从脑电图信号中识别癫痫特征波。方法确定癫痫脑电的3种特定的病态波形,选取小波变换的多尺度特性算法,分析处理16导标准脑电信号。结果分离出癫痫特征波,并对特征波进行识别,从而得到对癫痫的诊断;在此基础上将癫痫特征波反映射到16导标准电极,应用相关源电位软件对癫痫灶进行初步定位。结论小波变换的多尺度特性算法可以实现对癫痫脑电信号特征波的自动检测和病灶定位,有助于临床诊断和筛查癫痫。

关 键 词:小波变换  脑电图  癫痫  电生理学检测
文章编号:1674-1633(2008)04-0021-04
修稿时间:2007-11-07

Analyzing Research of EEG Signal Based on Sparse Representation Model
WU Min,,WEI Zhi-hui,TANG Li-ming,SU Yu-bao,LIU Tie-bing. Analyzing Research of EEG Signal Based on Sparse Representation Model[J]. Information of Medical Equipment, 2008, 23(4): 21-24
Authors:WU Min    WEI Zhi-hui  TANG Li-ming  SU Yu-bao  LIU Tie-bing
Affiliation:WU Min1,2,WEI Zhi-hui2,TANG Li-ming1,SU Yu-bao2,LIU Tie-bing1
Abstract:
Objective: To verify that the algorithm can identify EEG signal wave of epilepsy quickly and accurately.Methods: EEG epilepsy identified three specific pathological waveform,to select the wavelet transform algorithm of multi-scale analysis with the standard 16-EEG.Results: isolate the wave of epilepsy and a wave of recognition,resulting in the diagnosis of epilepsy;On this basis,reflect the wave of strikes into epilepsy-16 standard electrode potential source software applications related to the initial positioning of epileptic foci.Conclusion: Multi-scale wavelet transform algorithm can implement the right of epileptic EEG waves of automatic detection and localization,clinical diagnosis and screening contribute to epilepsy.
Keywords:wavelet transform  EEG  epilepsy  electrophysiology detection
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号