首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical cross‐linking of xenopericardial biomeshes: A bottom‐up study of structural and functional correlations
Authors:Ekaterina A. Grebenik  Leonid P. Istranov  Elena V. Istranova  Semyon N. Churbanov  Boris S. Shavkuta  Ruslan I. Dmitriev  Nadezhda N. Veryasova  Svetlana L. Kotova  Alexander V. Kurkov  Anatoly B. Shekhter  Peter S. Timashev
Abstract:Decellularized bovine pericardium (DBP)‐based biomeshes are the gold standard in reconstructive surgery. In order to prolong their stability after the transplantation, various chemical cross‐linking strategies are employed. However, structural and functional properties of the biomeshes differ in dependence on the cross‐linker used. Here, we performed a bottom‐up study of structural and functional alterations of DBP‐based biomeshes following cross‐linking with hexamethylene diisocyanate (HMDC), ethylene glycol diglycidyl ether (EGDE), 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) and genipin. The in vitro cytotoxicity tests supported their clinical applicability. Their structural differences (eg roughness, fibre thickness, pore morphology) were evaluated using the two‐photon confocal laser scanning, atomic force, scanning electron and polarized light microscopies. HMDC and EDC samples appeared to be the roughest. Complex mechanical trials indicated the tendency to reduced Young’s Modulus and mechanical anisotropy values of DBP upon cross‐linking. The lowest mechanical anisotropy was found in EDC and genipin sample groups. In vitro collagenase susceptibility was the highest for EDC samples and the lowest for EGDE samples. The comparative analysis of the results allowed us to recognize the strengths and weaknesses of each cross‐linker in relation to a particular clinical application.
Keywords:biomechanics  bovine pericardium  cross‐linking  decellularization  reconstructive surgery
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号