首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical image reconstruction for transmission tomography using relaxed ordered subset algorithms
Authors:Kole J S
Affiliation:Image Sciences Institute, Department of Nuclear Medicine and Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, Universiteitsweg 100, STR5.203, 3584 CG Utrecht, The Netherlands. j.s.kole@azu.nl
Abstract:
Statistical reconstruction methods offer possibilities for improving image quality as compared to analytical methods, but current reconstruction times prohibit routine clinical applications in x-ray computed tomography (CT). To reduce reconstruction times, we have applied (under) relaxation to ordered subset algorithms. This enables us to use subsets consisting of only single projection angle, effectively increasing the number of image updates within an entire iteration. A second advantage of applying relaxation is that it can help improve convergence by removing the limit cycle behaviour of ordered subset algorithms, which normally do not converge to an optimal solution but rather a suboptimal limit cycle consisting of as many points as there are subsets. Relaxation suppresses the limit cycle behaviour by decreasing the stepsize for approaching the solution. A simulation study for a 2D mathematical phantom and three different ordered subset algorithms shows that all three algorithms benefit from relaxation: equal noise-to-resolution trade-off can be achieved using fewer iterations than the conventional algorithms, while a lower minimal normalized mean square error (NMSE) clearly indicates a better convergence. Two different schemes for setting the relaxation parameter are studied, and both schemes yield approximately the same minimal NMSE.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号