首页 | 本学科首页   官方微博 | 高级检索  
     

基于调幅-调频与熵图多模态医学图像的配准
引用本文:周辉,杨媛,白利民,卢振泰,周寿军. 基于调幅-调频与熵图多模态医学图像的配准[J]. 中国神经再生研究, 2011, 15(30): 5600-5603
作者姓名:周辉  杨媛  白利民  卢振泰  周寿军
作者单位:解放军第四五八医院,广东省广州市 510602,解放军广州军区联勤部沿江东路干部休养所卫生所,广东省广州市510110,解放军第94921部队卫生队,福建省晋江市 362200,南方医科大学生物医学工程学院,广东省广州市510515,解放军第四五八医院,广东省广州市 510602
基金项目:国家青年基金项目(31000450)
摘    要:
背景:基于传统互信息量的多模态医学图像配准方法配准时需要利用二维直方图或者Parzen窗函数的方法估计概率密度分布,进而计算互信息量,这种方式计算速度慢,而且只考虑了图像的灰度信息,容易出现误配。目的:针对目前主流的配准方法鲁棒性差、耗时的缺点,提出了一种新的基于调幅-调频(AM-FM)特征互信息量的快速配准方法。方法:该方法考虑了图像的空间和结构信息;首先通过AM-FM模型对图像进行分解,得到图像的AM-FM特征,与图像的灰度特征一起组成高维特征;然后利用熵图和最小生成树加快AM-FM特征互信息量的计算,从而实现了医学图像的快速配准。结果与结论:对20组磁共振T1-T2加权图像、CT/正电子发射计算机断层成像图像进行了实验,结果表明该方法在图像空间分辨率较低,有噪声影响等情况下均可以达到较好的结果,且配准精度优于国际上的主流方法,具有计算速度快,精度高,鲁棒性强的特点,适于临床应用。

关 键 词:图像配准;互信息量;AM-FM特征;熵图;最小生成树

Multi-Modality Medical Image Registration Using AM-FM and Entropy Graph
Zhou Hui,Yang Yuan,Bai Li-min,Lu Zhen-tai and Zhou Shou-jun. Multi-Modality Medical Image Registration Using AM-FM and Entropy Graph[J]. Neural Regeneration Research, 2011, 15(30): 5600-5603
Authors:Zhou Hui  Yang Yuan  Bai Li-min  Lu Zhen-tai  Zhou Shou-jun
Affiliation:Chinese PLA No.458 Hospital, Guangzhou 510602, Guangdong Province, China,the Health-Office, PLA Sanitarium of Logistics Department, Guangzhou 510110, Guangdong Province, China,Health Department of Chinese PLA No.94921 Army, Jinjiang 362200, Fujian Province, China,School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong Province, China,Chinese PLA No.458 Hospital, Guangzhou 510602, Guangdong Province, China
Abstract:
BACKGROUND: Traditional mutual information (MI) based multimodal medical image registration evaluates probability density function by two-dimensional histogram or Parzen-window function, and then plug this estimation into the expression of MI. In this process, it just considers images intensity, but ignore spatial information of image, which leading to image mismatch. OBJECTIVE: To propose a new robust and fast registration method based on amplitude modulation-frequency modulation (AM-FM).METHODS: Firstly, we decomposed the image using AM-FM model so as to obtain the AM-FM features. Therefore, we got a series of high dimension features consisting of AM-FM features and intensity features. Finally, we computed mutual information using these high dimension features and entropy graph. It was an extension to the mutual information framework which incorporated spatial information about image structure into the registration process and had the potential to improve the accuracy and robustness of image registration, entropy graph was used to compute the mutual information. RESULTS AND CONCLUSION: In the experiment, we used 20 sets of data: T1-T2 weighted images and CT-PET images to compare the proposed method with MI. The results indicate that this algorithm is a more robust for image registration than conditional mutual information, even if the image in the context of low resolution and noise. This method is more accurate and robust while remaining computationally efficient. Hence, it is particularly suited to the clinical application.
Keywords:image registration   mutual information   AM-FM features   entropy graph   minimal spanning tree
点击此处可从《中国神经再生研究》浏览原始摘要信息
点击此处可从《中国神经再生研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号