Abstract: | 1. Cl(-)-sensitive micro-electrodes were used to measure intracellular Cl(-) in snail neurones. The electrodes consisted of a sharpened and chlorided silver wire mounted inside a glass micropipette.2. The electrodes appeared to record changes in internal Cl(-) accurately but in H cells the chloride equilibrium potential (E(Cl)) as measured by the Cl(-)-sensitive electrode was always less negative than E(ACh).3. In some H cells ACh caused a measurable increase in internal Cl(-) when the cell was at its resting potential. In voltage-clamped cells there was a close correlation between the change in internal Cl(-) and the extra clamp current caused by a brief application of ACh. This confirmed that ACh increases the cell's membrane permeability only to Cl(-) ions, and that E(ACh) was equal to E(Cl).4. There was good agreement between the measured change in internal Cl(-) and that calculated from the cell size and clamp charge only when it was assumed that a constant voltage offset was added to the potential of the Cl(-)-sensitive electrode while it was inside the nerve cell.5. Cl(-)-sensitive electrodes with AgCl as the sensitive material appear to be unsuitable for intracellular measurement of Cl(-), although they might be suitable for following changes in E(Cl).6. In certain D cells ACh also caused an increase in internal Cl(-) although it decreased the membrane potential. In the presence of hexamethonium, ACh caused a hyperpolarization and a smaller increase in internal chloride.7. It is concluded that the intracellular Cl(-) in both H and D cells is about 8.3 mM, giving an E(Cl) of about -58 mV. |